A stroke can be a devastating experience, leaving the patient with serious physical impairments and beset by concerns for the future. Today, that future is much brighter, as stroke rehabilitation has made enormous strides. Now, Jintronix offers a significant advance to help stroke patients restore their physical functions: an affordable motion-capture system for physical rehabilitation that uses Microsoft Kinect for Windows.

Jintronix offers a significant advance to help stroke patients restore their physical functions
The folks at Montreal- and Seattle-based Jintronix are tackling three major issues related to rehabilitation. First, and most importantly, they are working to improve patients’ compliance with their rehabilitation regimen, since up to 65% of patients fail to adhere fully—or at all—with their programs.[1] In addition, they are addressing the lack of accessibility and the high cost associated with rehabilitation. If you have just had a stroke, even getting to the clinic is a challenge, and the cost of hiring a private physical therapist to come to your home is too high for most people.

Consider Jane, a 57-year-old patient. After experiencing a stroke eight months ago, she now has difficulty moving the entire right side of her body. Like most stroke victims, Jane faces one to three weekly therapy sessions for up to two years. Unable to drive, she depends on her daughter to get her to these sessions; unable to work, she worries about the $100 fee per visit, as she has exhausted her insurance coverage. If that weren’t enough, Jane also must exercise for hours daily just to maintain her mobility. Unfortunately, these exercises are very repetitive, and Jane finds it difficult to motivate herself to do them. 

Jintronix tackles all of these issues by providing patients with fun, “gamified” exercises that accelerate recovery and increase adherence. In addition, Jintronix gives patients immediate feedback, which ensures that they perform their movements correctly. This is critical when the patient is exercising at home.

For clinicians and insurers, Jintronix monitors and collects data remotely to measure compliance and provides critical information on how to customize the patient’s regimen. Thus patients can conveniently and consistently get treatment between clinic visits, from the comfort of their own homes, with results transmitted directly to their therapist. This has been shown to be an effective method for delivering care, and for people living in remote areas, this type of tele-rehabilitation has the potential to be a real game changer.[2] Moreover, a growing shortage of trained clinicians—the shortfall in the United States was estimated to be 13,500 in 2013 and is expected to grow to 31,000 by 2016—means that more and more patients will be reliant on home rehab[3].

Motion capture lies at the heart of Jintronix. The first-generation Kinect for Windows camera can track 20 points on the body with no need for the patient to wear physical sensors, enabling Jintronix to track the patient’s position in three-dimensional space at 30 frames per second. Behind the scenes, Jintronix uses the data captured by the sensor to track such metrics as the speed and fluidity of patients’ movement. It also records patients’ compensation patterns, such as leaning the trunk forward to reach an object instead of extending the arm normally.

Jintronix then uses this data to place patients in an interactive game environment that’s built around rehabilitation exercises. For example, in the game Fish Frenzy, the patient's hand controls the movement of an on-screen fish, moving it to capture food objects that are placed around the screen in a specific therapeutic pattern, like a rectangle or a figure eight.

There are other rehab systems out there that use motion capture, but they often require sensor gloves or other proprietary hardware that take a lot of training and supervision to use, or they depend on rigging an entire room with expensive cameras or placing lots of sensors on the body. “Thanks to Kinect for Windows, Jintronix doesn’t require any extra hardware, cameras, or body sensors, which keeps the price affordable,” says Shawn Errunza, CEO of Jintronix. “That low price point is extremely important,” notes Errunza, “as we want to see our system in the home of every patient who needs neurological and orthopedic rehab.”

Jintronix developed the system by working closely with leaders in the field of physical rehabilitation, such as Dr. Mindy Levin, professor of physical and occupational therapy at McGill University. With strong support both on the research and clinical sides, the company designed a system that can serve a variety of patients in addition to post-stroke victims—good news for the nearly 36 million individuals suffering from physical disabilities in the United States[4].

What’s more, Jintronix is a potential boon to the elderly, as it has been shown that seniors can reduce the risk of injury due to falls by 35% by following specific exercise programs.  Unfortunately, most home rehab regimens fail to engage such patients. A recent study of elderly patients found that less than 10 percent reported doing their prescribed physical therapy exercises five days a week (which is considered full adherence), and more than a third reported zero days of compliance.

Jintronix is currently in closed beta testing in five countries, involving more than 150 patients at 60 clinics and hospitals, including DaVinci Physical Therapy in the Seattle area and the Gingras Lindsay Rehabilitation Hospital in Montreal. According to Errunza, “preliminary results show that the fun factor of our activities has a tangible effect on patients’ motivation to stay engaged in their therapy.”

Jintronix is working to remove all the major barriers to physical rehabilitation by making a system that is fun, simple to use, and affordable. Jintronix demonstrates the potential of natural user interfaces (NUI) to make technology simpler and more effective—and the ability of Kinect for Windows to help high tech meet essential human needs.

The Kinect for Windows Team

Key links

 


1 http://physiotherapy.org.nz/assets/Professional-dev/Journal/2003-July/July03commentary.pdf

2 http://www.ncbi.nlm.nih.gov/pubmed/23319181

3 http://www.apta.org/PTinMotion/NewsNow/2013/10/21/PTDemand/

4 http://ptjournal.apta.org/content/86/3/401.full