• Kinect for Windows Product Blog

    Kinect for Windows Helps Girls Everywhere Dress Like Barbie

    • 2 Comments

    I grew up in the UK and my female cousins all had Barbie. In fact Barbies – they had lots of Barbie dolls and ton of accessories that they were obsessed with. I was more of a BMX kind of kid and thought my days of Barbie education were long behind me, but with a young daughter I’m beginning to realize that I have plenty more Barbie ahead of me, littered around the house like landmines. This time around though, I’m genuinely interested thanks to a Kinect-enabled application. The outfits from Barbie the Dream Closet not only scale to fit users, but enable them to turn sideways to see how they look from various angles.

    This week, Barbie lovers in Sydney, Australia, are being given the chance to do more than fanaticize how they’d look in their favorite Barbie outfit. Thanks to Mattel, Gun Communications, Adapptor, and Kinect for Windows, Barbie The Dream Closet is here.

    The application invites users to take a walk down memory lane and select from 50 years of Barbie fashions. Standing in front of Barbie’s life-sized augmented reality “mirror,” fans can choose from several outfits in her digital wardrobe—virtually trying them on for size.

    The solution, built with the Kinect for Windows SDK and using the Kinect for Windows sensor, tracks users’ movements and gestures enabling them to easily browse through the closet and select outfits that strike their fancy. Once an outfit is selected, the Kinect for Windows skeletal tracking determines the position and orientation of the user. The application then rescales Barbie’s clothes, rendering them over the user in real time for a custom fit.

    One of the most interesting aspects of this solution is the technology’s ability to scale - with menus, navigation controls and clothing all dynamically adapting so that everyone from a little girl to a grown woman (and cough, yes, even a committed father) can enjoy the experience. To facilitate these advancements, each outfit was photographed on a Barbie doll, cut into multiple parts, and then built individually via the application. 

    Of course, the experience wouldn’t be complete without the ability to memorialize it. A photo is taken and, with approval/consent from those photographed, is uploaded and displayed in a gallery on the Barbie Australian Facebook page. (Grandparents can join in the fun from afar!)

    I spoke with Sarah  Sproule, Director, Gun Communications about the genesis of the idea who told me, We started working on Barbie The Dream Closet six months ago, working with our development partner Adapptor. Everyone has been impressed by the flexibility, and innovation Microsoft has poured into Kinect for Windows. Kinect technology has provided Barbie with a rich and exciting initiativBarbie enthusiasts of all ages can enjoy trying on and posing in outfits.e that's proving to delight fans of all ages. We're thrilled with the result, as is Mattel - our client."

    Barbie’s Dream Closet, was opened to the public at the Westfield Parramatta in Sydney  today and will be there through April 15. Its first day, it drew enthusiastic crowds, with around 100 people experiencing Barbie The Dream Closet. It's expected to draw even larger crowds over the holidays. It’s set to be in Melbourne and Brisbane later this year.

     Meantime, the Kinect for Windows team is just as excited about it as my daughter:

    “The first time I saw Barbie’s Dream Closet in action, I knew it would strike a chord,” notes Kinect for Windows Communications Manager, Heather Mitchell. “It’s such a playful, creative use of the technology. I remember fanaticizing about wearing Barbie’s clothes when I was a little girl. Disco Ken was a huge hit in my household back then…Who didn’t want to match his dance moves with their own life-sized Barbie disco dress? I think tens of thousands of grown girls have been waiting for this experience for years…Feels like a natural.”

    That’s the beauty of Kinect – it enables amazingly natural interactions with technology and hundreds of companies are out there building amazing things; we can’t wait to see what they continue to invent.

    Steve Clayton
    Editor, Next at Microsoft

  • Kinect for Windows Product Blog

    Kinect for Windows at Convergence of Style and Technology for New York Fashion Week

    • 5 Comments

    Kinect for Windows powers a new technology that virtually models the hottest styles in Bloomingdale’s during Fashion Week.This year, Kinect for Windows gives Fashion Week in New York a high-tech boost by offering a new way to model the latest styles at retail. Swivel, a virtual dressing room that is featured at Bloomingdale's, helps you quickly see what clothes look like on you—without the drudgery of trying on multiple garments in the changing room.

    Twenty Bloomingdale's stores across the United States are featuring Swivel this week— including outlets in Atlanta, Chicago, Miami, Los Angeles, and San Francisco. This Kinect for Windows application was developed by FaceCake Marketing Technologies, Inc.

    Also featured at Bloomingdale's during Fashion Week is a virtual version of a Microsoft Research project called The Printing Dress. This remarkable melding of fashion and technology is on display at Bloomingdale's 59th Street location in New York. The Printing Dress enables the wearer of the virtual dress to display messages via a projector inside the dress by typing on keys that are inlaid on the bodice. Normally, you wouldn't be able to try on such a fragile runway garment, but the Kinect-enabled technology makes it possible to see how haute couture looks on you.

    Bloomingdale's has made early and ongoing investments in deploying Kinect for Windows gesture-based experiences at retail stores: they featured another Kinect for Windows solution last March at their Century City store in Los Angeles, just six weeks after the launch of the technology. That solution by Bodymetrics uses shoppers’ body measurements to help them find the best fitting jeans. The Bodymetrics body mapping technology is currently being used at the Bloomingdale’s store in Palo Alto, California.

    "Merging fashion with technology is not just a current trend, but the wave of the future," said Bloomingdale's Senior Vice President of Marketing Frank Berman. "We recognize the melding of the two here at Bloomingdale's, and value our partnership with companies like Microsoft to bring exciting animation to our stores and website to enhance the experience for our shoppers."

    Here's how Swivel works: the Kinect for Windows sensor detects your body and displays an image of you on the screen. Kinect provides both the customer's skeleton frame and 3-D depth data to the Swivel sizing and product display applications. Wave your hand to select a new outfit, and it is nearly instantly fitted to your form. Next, you can turn around and view the clothing from different angles. Finally, you can snap a picture of you dressed in your favorite ensemble and—by using a secure tablet—share it with friends over social networks.

    The Printing Dress, a remarkable melding of fashion and technology, on display at Bloomingdale's in New York.Since Bloomingdale’s piloted the Swivel application last May, FaceCake has enhanced detection and identification so that the camera tracks the shopper (instead of forcing the shopper to move further for the camera) and improved detection of different-sized people so that it can display more accurately how the garment would look if fitted to the customer.

    Swivel and Bodymetrics are only two examples of Kinect for Windows unleashing new experiences in fashion and retail. Others include:

    • One of the participants in the recent Microsoft Accelerator for Kinect program, Styku, LLC, has also developed virtual fitting room software and body scanner technology powered by Kinect for Windows. 
    • Mattel brought to life Barbie: The Dream Closet that makes it possible for anyone to try on clothes from 50 years of Barbie's wardrobe. 
    • Kimetric , another Kinect Accelerator participant, uses Kinect for Windows sensors strategically placed throughout a store to gather useful data, helping a retailer to better understand consumer behavior.

    With this recent wave of retail experiences powered by Kinect for Windows, we are starting to get a glimpse into the ways technology innovators and retailers will reimagine and transform the way we shop with new Kinect-enabled tools.

    Kinect for Windows Team

    Key Links

  • Kinect for Windows Product Blog

    Build-A-Bear Selects Kinect for Windows for "Store of the Future"

    • 0 Comments

    Build-A-Bear Workshop stores have been delivering custom-tailored experiences to children for 15 years in the form of make-your-own stuffed animals, but the company recently recognized that its target audience was gravitating toward digital devices. So it has begun advancing its in-store experiences to match the preferences of its core customers by incorporating digital screens throughout the stores—from the entrance to the stations where the magic of creating new fluffy friends happens.

    A key part of Build-A-Bear's digital shift is their interactive storefront that's powered by Kinect for Windows. It enables shoppers to play digital games on either a screen adjacent to the store entrance or directly through the storefront window simply by using their bodies and natural gestures to control the game.

    Children pop virtual balloons in a Kinect for Windows-enabled game at this Build-A-Bear store's front window.
    Children pop virtual balloons in a Kinect for Windows-enabled game at this Build-A-Bear store's front window.

    "We're half retail, half theme park," said Build-A-Bear Director of Digital Ventures Brandon Elliott. The Kinect for Windows platform instantly appealed to Build-A-Bear as "a great enabler for personalized interactivity."

    The Kinect for Windows application, launched at six pilot stores, uses skeletal tracking to enable two players (four hands) to pop virtual balloons (up to five balloons simultaneously) by waving their hands or by touching the screen directly. While an increasing number of retail stores use digital signage these days, Elliott noted: "What they're not doing is building a platform for interactive use."

    "We wanted something that we could build on, that's a platform for ever-improving experiences," Elliott said. "With Kinect for Windows, there’s no learning curve. People can interact naturally with technology by simply speaking and gesturing the way they do when communicating with other people. The Kinect for Windows sensor sees and hears them."

    "Right now, we're just using the skeletal tracking, but we could use voice recognition components or transform the kids into on-screen avatars," he added. "The possibilities are endless."
     
    Part of the Build-A-Bear's vision is to create Kinect for Windows apps that tie into the seasonal marketing themes that permeate the stores. Elliott said that Build-A-Bear selected the combination of the Microsoft .NET Framework, Kinect for Windows SDK, and Kinect for Windows sensor specifically so that they can take advantage of existing developer platforms to build these new apps quickly.

    “We appreciate that the Kinect for Windows SDK is developing so rapidly. We appreciate the investment Microsoft is making to continue to open up features within the Kinect for Windows sensor to us,” Elliott said. "The combination of Kinect for Windows hardware and software unlocks a world of new UI possibilities for us."

    Microsoft developer and technical architect Todd Van Nurden and others at the Minneapolis-based Microsoft Technology Center helped Build-A-Bear with an early consultation that led to prototyping apps for the project.

    "The main focus of my consult was to look for areas beyond simple screen-tied interactions to create experiences where Kinect for Windows activates the environment. Screen-based interactions are, of course, the easiest but less magical then environmental," Van Nurden said. "We were going for magical."

    The first six Build-A-Bear interactive stores launched in October and November 2012 in St. Louis, Missouri; Pleasanton, California; Annapolis, Maryland; Troy, Michigan; Fairfax, Virginia, and Indianapolis, Indiana (details). Four of the stores have gesture-enhanced interactive signs at the entrance, while two had to be placed behind windows to comply with mall rules. Kinect for Windows can work through glass with the assistance of a capacitive sensor that enables the window to work as a touch screen, and an inductive driver that turns glass into a speaker.

    So far, Build-A-Bear has been thrilled with what Elliott calls "fantastic" results. "Kids get it," he said. "We have a list of apps we want to build over the next couple of years. We can literally write an app for one computer in the store, and put it anywhere."

    Kinect for Windows team

    Key Links

  • Kinect for Windows Product Blog

    Monsters Come to Life with Kinect for Windows

    • 2 Comments

    A demon dog robot under constructionIt all started with a couple of kids and a remarkable idea, which eventually spawned two terrifying demon dogs and their master. This concept is transforming the haunt industry and could eventually change how theme parks and other entertainment businesses approach animated mechanical electronics (animatronics).
     
    Here's the behind-the-scenes story of how this all came to be:

    The boys, 6-year-old Mark and 10-year-old Jack, fell in love with Travel Channel's Making Monsters, a TV program that chronicles the creation of lifelike animatronic creatures. After seeing their dad's work with Kinect for Windows at the Minneapolis-based Microsoft Technology Center, they connected the dots and dreamed up the concept: wouldn't it be awesome if Dad could use his expertise with the Kinect for Windows motion sensor to make better and scarier monsters?

    So “Dad”—Microsoft developer and technical architect Todd Van Nurden—sent an email to Distortions Unlimited in Greeley, Colorado, offering praise of their work sculpting monsters out of clay and adjustable metal armatures. He also threw in his boys' suggestion on how they might take things to the next level with Kinect for Windows: Imagine how much cooler and more realistic these monsters could be if they had the ability to see you, hear you, anticipate your behavior, and respond to it. Imagine what it means to this industry now that monster makers can take advantage of the Kinect for Windows gesture and voice capabilities.

    Two months passed. Then one day, Todd received a voice mail message from Distortions CEO Ed Edmunds expressing interest. The result: nine months of off-and-on work, culminating with the debut of a Making Monsters episode detailing the project on Travel Channel earlier today, October 21 (check local listings for show times, including repeat airings). The full demonic installation can also be experienced firsthand at The 13th Floor haunted house in Denver, Colorado, now through November 10.

    To get things started, Distortions sent Van Nurden maquettes—scale models about one-quarter of the final size—to build prototypes of two demon dogs and their demon master. Van Nurden worked with Parker, a company that specializes in robotics, to develop movement by using random path manipulation that is more fluid than your typical robot and also is reactive and only loosely scripted. The maquettes were wired to Kinect for Windows with skeletal tracking, audio tracking, and voice control functionality as a proof of concept to suggest a menu of possible options.

    Distortions was impressed. "Ed saw everything it could do and said, 'I want all of them. We need to blow this out’," recalled Van Nurden.


    Todd Van Nurden prepares to install the Kinect for Windows sensor in the demon's belt 
    Todd Van Nurden prepares to install the Kinect for Windows sensor in the demon's belt

    The full-sized dogs are four feet high, while the demon master stands nearly 14 feet. A Kinect for Windows sensor connected to a ruggedized Lenovo M92 workstation is embedded in the demon's belt and, after interpreting tracking data, sends commands to control itself and the dogs via wired Ethernet. Custom software, built by using the Kinect for Windows SDK, provides the operators with a drag-and-drop interface for laying out character placement and other configurable settings. It also provides a top-down view for the attraction's operator, displaying where the guests are and how the creatures are tracking them.

    "We used a less common approach to processing the data as we leveraged the Reactive Extensions for .NET to basically set up push-based Linq subscriptions," Van Nurden revealed. "The drag-and-drop features enable the operator to control the place-space configuration, as well as when certain behaviors begin. We used most of the Kinect for Windows SDK managed API with the exception of raw depth data."

    The dogs are programmed to react very differently if approached by an adult (which might elicit a bark or growl) versus a child (which could prompt a fast pant or soft whimper). Scratching behind a hound's ears provokes a "happy dog" response—assuming you can overcome your fear and get close enough to actually touch one! Each action or mood includes its own set of kinesthetic actions and vocal cues. The sensor quietly tracks groups of people, alternating between a loose tracking algorithm that can calculate relative height quickly when figures are further away and full skeletal tracking when someone approaches a dog or demon, requiring more detailed data to drive the beasts' reactions.

    The end product was so delightfully scary that Van Nurden had to reassure his own sons when they were faced with a life-sized working model of one of the dogs. "I programmed him, he's not going to hurt you," he comforted them.

    Fortunately, it is possible to become the demons' master. If you perform a secret voice and movement sequence, they will actually bow to you.

    Lisa Tanzer, executive producer for Making Monsters, has been following creature creation for two years while shooting the show at Distortions Unlimited. She was impressed by how much more effective the Kinect for Windows interactivity is than the traditional looped audio and fully scripted movements of regular animatronics: "Making the monsters themselves is the same process—you take clay, sculpt it over an armature, mold it, paint it, all the same steps," she said. "The thing that made this project Distortions did for 13th Floor so incredible and fascinating was the Kinect for Windows technology.”

    "It can be really scary," Tanzer reported. "The dogs and demon creature key into people and actually track them around the room. The dog turns, looks at you and whimpers; you go 'Oh, wow, is this thing going to get me?' It's just like a human actor latching on to somebody in a haunted house but there's no human, only this incredible technology.”

    "Incorporating Kinect for Windows into monster making is very new to the haunt industry," she added. "In terms of the entertainment industry, it's a huge deal. I think it's a really cool illustration of where things are going."

    Kinect for Windows team


    Key Links

  • Kinect for Windows Product Blog

    Inside the Kinect for Windows SDK Update with Peter Zatloukal and Bob Heddle

    • 1 Comments

    Now that the updated Kinect for Windows SDK  is available for download, Engineering Manager Peter Zatloukal and Group Program Manager Bob Heddle sat down to discuss what this significant update means to developers.

    Bob Heddle demonstrates the new infrared functionality in the Kinect for Windows SDK 
    Bob Heddle demonstrates the new infrared functionality in the Kinect for Windows SDK.

    Why should developers care about this update to the Kinect for Windows Software Development Kit (SDK)?

    Bob: Because they can do more stuff and then deploy that stuff on multiple operating systems!

    Peter: In general, developers will like the Kinect for Windows SDK because it gives them what I believe is the best tool out there for building applications with gesture and voice.

    In the SDK update, you can do more things than you could before, there’s more documentation, plus there’s a specific sample called Basic Interactions that’s a follow-on to our Human Interface Guidelines (HIG). Human Interface Guidelines are a big investment of ours, and will continue to be. First we gave businesses and developers the HIG in May, and now we have this first sample, demonstrating an implementation of the HIG. With it, the Physical Interaction Zone (PhIZ) is exposed. The PhIZ is a component that maps a motion range to the screen size, allowing users to comfortably control the cursor on the screen.

    This sample is a bit hidden in the toolkit browser, but everyone should check it out. It embodies best practices that we described in the HIG and is can be re-purposed by developers easily and quickly.

    Bob: First we had the HIG, now we have this first sample. And it’s only going to get better. There will be more to come in the future.

    Why upgrade?

    Bob: There’s no downside to upgrading, so everyone should do it today! There are no breaking changes; it’s fully compatible with previous releases of the SDK, it gives you better operating support reach, there are a lot of new features, and it supports distribution in more countries with localized setup and license agreements. And, of course, China is now part of the equation.

    Peter: There are four basic reasons to use the Kinect for Windows SDK and to upgrade to the most recent version:

    • More sensor data are exposed in this release.
    • It’s easier to use than ever (more samples, more documentation).
    • There’s more operating system and tool support (including Windows 8, virtual machine support, Microsoft Visual Studio 2012, and Microsoft .NET Framework 4.5).
    • It supports distribution in more geographical locations. 

    What are your top three favorite features in the latest release of the SDK and why?

    Peter: If I must limit myself to three, then I’d say the HIG sample (Basic Interactions) is probably my favorite new thing. Secondly, there’s so much more documentation for developers. And last but not least…infrared! I’ve been dying for infrared since the beginning. What do you expect? I’m a developer. Now I can see in the dark!

    Bob: My three would be extended-range depth data, color camera settings, and Windows 8 support. Why wouldn’t you want to have the ability to develop for Windows 8? And by giving access to the depth data, we’re giving developers the ability to see beyond 4 meters. Sure, the data out at that range isn’t always pretty, but we’ve taken the guardrails off—we’re letting you go off-roading. Go for it!

    New extended-range depth data now provides details beyond 4 meters. These images show the difference between depth data gathered from previous SDKs (left) versus the updated SDK (right). 
    New extended-range depth data now provides details beyond 4 meters. These images show the difference between depth data gathered from previous SDKs (left) versus the updated SDK (right).

    Peter: Oh yeah, and regarding camera settings, in case it isn’t obvious: this is for those people who want to tune their apps specifically to known environments.

    What's it like working together?

    Peter: Bob is one of the most technically capable program managers (PMs) I have had the privilege of working with.

    Bob: We have worked together for so long—over a decade and in three different companies—so there is a natural trust in each other and our abilities. When you are lucky to have that, you don’t have to spend energy and time figuring out how to work together. Instead, you can focus on getting things done. This leaves us more time to really think about the customer rather than the division of labor.

    Peter: My team is organized by the areas of technical affinity. I have developers focused on:

    • SDK runtime
    • Computer vision/machine learning
    • Drivers and low-level subsystems
    • Audio
    • Samples and tools

    Bob: We have a unique approach to the way we organize our teams: I take a very scenario-driven approach, while Peter takes a technically focused approach. My team is organized into PMs who look holistically across what end users need, versus what commercial customers need, versus what developers need.

    Peter: We organize this way intentionally and we believe it’s a best practice that allows us to iterate quickly and successfully!

    What was the process you and your teams went through to determine what this SDK release would include, and who is this SDK for?

    Bob: This SDK is for every Kinect for Windows developer and anyone who wants to develop with voice and gesture. Seriously, if you’re already using a previous version, there is really no reason not to upgrade. You might have noticed that we gave developers a first version of the SDK in February, then a significant update in May, and now this release. We have designed Kinect for Windows around rapid updates to the SDK; as we roll out new functionality, we test our backwards compatibility very thoroughly, and we ensure no breaking changes.

    We are wholeheartedly dedicated to Kinect for Windows. And we’re invested in continuing to release updated iterations of the SDK rapidly for our business and developer customers. I hope the community recognizes that we’re making the SDK easier and easier to use over time and are really listening to their feedback.

    Peter Zatloukal, Engineering Manager
    Bob Heddle, Group Program Manager
    Kinect for Windows

    Related Links

  • Kinect for Windows Product Blog

    Kinect for Windows shines at the 2014 NRF Convention

    • 1 Comments

    This week, some 30,000 retailers from around the world descended on New York’s Javits Center for the 2014 edition of the National Retail Federation’s Annual Convention and Expo, better known as “Retail’s BIG Show.” With an exhibit space covering nearly four football fields and featuring more than 500 vendors, an exhibitor could have been overlooked easily—but not when your exhibit displayed retailing innovations that use the power of the Microsoft Kinect for Windows sensor and SDK. Here are some of the Kinect experiences that attracted attention on the exhibit floor.

    Visitors at the Kinect for Windows demo station

    NEC Corporation of America demonstrated a “smart shelf” application that makes the most of valuable retail space by tailoring the messaging on digital signage to fit the shopper. At the heart of this system is Kinect for Windows, which discerns shoppers who are interested in the display and uses analytics to determine such consumer attributes as age, gender, and level of engagement. On the back end, the data captured by Kinect is delivered to a dashboard where it can be further mined for business intelligence. Allen Ganz, a senior account development manager at NEC, praises the Kinect-based solution, noting that it “provides unprecedented actionable insights for retailers and brands at the point-of-purchase decision.”

    Razorfish displayed two different Kinect-based scenarios, both of which highlight an immersive consumer experience that’s integrated across devices. The first scenario engages potential customers by involving them in a Kinect-driven beach soccer game. In this dual-screen experience, one customer has the role of striker, and uses his or her body movements—captured by the Kinect for Windows sensor—to dribble the ball and then kick it toward the goal. The other customer assumes the role of goalie; his or her avatar appears on the second display and its actions are controlled by the customer’s movements—again captured via the Kinect for Windows sensor—as he or she tries to block the shot. Customers who succeed, accumulate points that can be redeemed for a real (not virtual) beverage from a connected vending machine. Customers can work up a sweat in this game, so the beverage is a much-appreciated reward. But the real reward goes to the retailer, as this compelling, gamified experience creates unique opportunities for sales associates to connect with the shoppers.

    The second scenario from Razorfish also featured a beach theme. This sample experience is intended to take place in a surf shop, where customers design their own customized surfboard by using a Microsoft Surface. Then they use a Kinect-enabled digital signage application to capture images of the customized board against the background of one of the world’s top beaches. This image is immediately printed as a postcard, and a second copy is sent to the customer in an email. Here, too, the real goal is to engage customers, pulling them into an immersive experience that is personal, mobile, and social.

    Razorfish demos their customized surfboard scenario

    Above all, the Razorfish experiences help create a bond between the customer and a brand. “Kinect enables consumers to directly interact personally with a brand, resulting in a greater sense of brand loyalty,” notes Corey Schuman, a senior technical architect at Razorfish.

    Yet another compelling Kinect-enabled customer experience was demonstrated by FaceCake, whose Swivel application turns the computer into a virtual dressing room where a shopper can try on clothes and accessories with a simple click. The customer poses in front of a Kinect for Windows sensor, which captures his or her image. Then the shopper selects items from a photo display of clothing and accessories, and the application displays the shopper “wearing” the selected items. So, a curious shopper can try on, say, various dress styles until she finds one she likes. Then she can add a necklace, scarf, or handbag to create an entire ensemble. She can even split the screen to compare her options, showing side-by-side images of the same dress accessorized with different hats. And yes, this app works for male shoppers, too.

    The common theme in all these Kinect-enabled retail applications is customer engagement. Imagine seeing a digital sign respond to you personally, or getting involved in the creation of your own product or ideal ensemble. If you’re a customer, these are the kinds of interactive experiences that draw you in. In a world where every retailer is looking for new ways to attract and connect with customers, Kinect for Windows is engaging customers and helping them learn more about the products. The upshot is a satisfied customer who's made a stronger connection during their shopping experience, and a healthier bottom line for the retailer.

    The Kinect for Windows Team

    Key links

  • Kinect for Windows Product Blog

    nsquared releases three new Kinect for Windows-based applications

    • 0 Comments

    The following blog post was guest authored by Celeste Humphrey, business development consultant at nsquared, and Dr. Neil Roodyn, director of nsquared.

    A company that is passionate about learning, technology, and creating awesome user experiences, nsquared has developed three new applications that take advantage of Kinect for Windows to provide users with interactive, natural user interface experiences. nsquared is located in Sydney, Australia.


    At nsquared, we believe that vision-based interaction is the future of computing. The excitement we see in the technology industry regarding touch and tablet computing is a harbinger of the changes that are coming as smarter computer vision systems evolve.

    Kinect for Windows has provided us with the tools to create some truly amazing products for education, hospitality, and events.

    Education: nsquared sky spelling

    We are excited to announce nsquared sky spelling, our first Kinect for Windows-based educational game. This new application, aimed at children aged 4 to 12, makes it fun for children to learn to spell in an interactive and collaborative environment. Each child selects a character or vehicle, such as a dragon, a biplane, or a butterfly, and then flies as that character through the sky to capture letters that complete the spelling of various words. The skeleton recognition capabilities of the Kinect for Windows sensor and software development kit (SDK) track the movement of the children as they stretch out their arms as wings to navigate their character through hoops alongside their wingman (another player). The color camera in the Kinect for Windows sensor allows each child to add their photo, thereby personalizing their experience.

    nsquared sky spelling
    nsquared sky spelling

    Hospitality: nsquared hotel kiosk

    The nsquared hotel kiosk augments the concierge function in a hotel by providing guidance to hotel guests through an intuitive, interactive experience. Guests can browse through images and videos of activities, explore locations on a map, and find out what's happening with a live event calendar. It also provides live weather updates and has customizable themes. The nsquared hotel kiosk uses the new gestures supported in the Kinect for Windows SDK 1.7, enabling users to use a “grip” gesture to drag content across the screen and a “push” gesture to select content. With its fun user interface, this informative kiosk provides guests an interactive alternative to the old brochure rack.

    Kinect for Windows technology enables nsquared to provide an interactive kiosk experience for less than half the price of a similar sized touchscreen (see note).

    nsquared hotel kiosk
    nsquared hotel kiosk

    Events: nsquared media viewer

    The new nsquared media viewer application is a great way to explore interactive content in almost any environment. Designed for building lobbies, experience centers, events, and corporate locations, the nsquared media viewer enables you to display images and video by category in a stylish, customizable carousel. Easy to use, anyone can walk up and start browsing in seconds.

    In addition to taking advantage of key features of the Kinect for Windows sensor and SDK, nsquared media viewer utilizes Windows Azure,  allowing clients to view reports about the usage of the screen and the content displayed.

    nsquared media viewer
    nsquared media viewer

    Kinect for Windows technology has made it possible for nsquared to create applications that allow people to interact with content in amazing new ways, helping us take a step towards our collective future of richer vision-based computing systems.

    Celeste Humphrey, business development consultant, and
    Dr. Neil Roodyn, director, nsquared

    Key links

     

    ____________
    Note: Based on the price of 65-inch touch overlay at approximately US$900 compared to the cost of a Kinect for Windows sensor at approximately US$250. For integrated touch solutions, the price can be far higher.
    Back to blog...

  • Kinect for Windows Product Blog

    FIRST Teams to Use Kinect for Windows to Control Robots

    • 0 Comments

    Getting technology to do what you want can be challenging. Imagine building a remote-controlled robot in 6 weeks, from pre-defined parts, which can perform various tasks in a competitive environment. That’s the challenge presented to 2,500 teams of students who will be participating in the FIRST (For Inspiration and Recognition of Science and Technology) Robotics Competition.

    The worldwide competition, open to students in grades 9-12, kicks off this morning with a NASA-televised event, including pre-recorded opening remarks from Presidents Clinton and G.W. Bush, Dean Kamen, founder of FIRST and inventor of the Segway, and Alex Kipman, General Manager, Hardware Incubation, Xbox.

    Last year, several FIRST teams experimented with the Kinect natural user interface capabilities to control their robots. The difference this year is the Kinect hardware and software will be included in the parts kits teams receive to build their robots. Teams will be able to control their robots not only with joy sticks, but gestures and possibly spoken commands.

    The first part of the competition is the autonomous period, in which robot can only be controlled by sensor input and commands. This is when the depth and speech capabilities of Kinect will prove extremely useful.

     To help teams understand how to incorporate Kinect technologies into the design of their robot controls for the 2012 competition, workshops are being held around the country. Students will be using C# or C++ to program the drive stations of their robots to recognize and respond to gestures and poses.

    In addition, Microsoft Stores across the country are teaming up with FIRST robotics teams to provide Kinect tools, technical support, and assistance.

    While winning teams get bragging rights, all participants gain real-world experience by working with professional engineers to build their team’s robot, using sophisticated hardware and software, such as the Kinect for Windows SDK. Team members also gain design, programming, project management, and strategic thinking experience. Last but not least, over $15 million of college scholarships will be awarded throughout the competition.

    “The ability to utilize Kinect technologies and capabilities to transform the way people interact with computers already has sparked the imagination of thousands of developers, students, and researchers from around the world,” notes FIRST founder Dean Kamen. “We look forward to seeing how FIRST students utilize Kinect in the design and manipulation of their robots, and are grateful to Microsoft for participating in the competition as well as offering their support and donating thousands of Kinect sensors.”

    This morning’s kick-off of the 2012 FIRST Robotics Competition was a highly anticipated day. Approximately 2,500 teams worldwide were given a kit of 600-700 discrete parts including a Kinect sensor and the Kinect for Windows software development kit (SDK), along with the details and rules for this year’s game, Rebound Rumble. Learn how Kinect for Windows will play a role in this year’s game by watching the game animation.

    Kinect for Windows team

  • Kinect for Windows Product Blog

    KinÊtre Uses Kinect for Windows to Animate Objects in Real Time

    • 0 Comments

    KinÊtre Uses Kinect for Windows to Animate Objects Quickly in Real TimeTraditional digital animation techniques can be costly and time-consuming. But KinÊtre—a new Kinect for Windows project developed by a team at Microsoft Research Cambridge—makes the process quick and simple enough that anyone can be an animator who brings inanimate objects to life.

    KinÊtre uses the skeletal tracking technology in the Kinect for Windows software development kit (SDK) for input, scanning an object as the Kinect sensor is slowly panned around it.  The KinÊtre team then applied their expertise in cutting-edge 3-D image processing algorithms to turn the object into a flexible mesh that is manipulated to match user movements tracked by the Kinect sensor.

    Microsoft has made deep investments in Kinect hardware and software. This enables innovative projects like KinÊtre, which is being presented this week at SIGGRAPH 2012, the International Conference and Exhibition on Computer Graphics and Interactive Techniques. Rather than targeting professional computer graphics (CG) animators, KinÊtre is intended to bring mesh animation to a new audience of novice users.

    Shahram Izadi, one of the tool's creators at Microsoft Research Cambridge, told me that the goal of this research project is to make this type of animation much more accessible than it's been—historically requiring a studio full of trained CG animators to build these types of effects. "KinÊtre makes creating animations a more playful activity," he said. "With it, we demonstrate potential uses of our system for interactive storytelling and new forms of physical gaming."

    This incredibly cool prototype reinforces the world of possibilities that Kinect for Windows can bring to life and even, perhaps, do a little dance.

    Peter Zatloukal,
    Kinect for Windows Engineering Manager

    Key Links

  • Kinect for Windows Product Blog

    Kinect for Windows Applications Shown at Microsoft TechForum

    • 0 Comments

    This year’s Microsoft TechForum provided an opportunity for Craig Mundie, Microsoft Chief Research and Strategy Officer, to discuss the company’s vision for the future of technology as well as showcase two early examples of third-party Kinect for Windows applications in action.

    Mundie was joined by Don Mattrick, President of the Microsoft Interactive Entertainment Business, and his Chief of Staff, Aaron Greenberg, who demonstrated both of the third-party Kinect for Windows applications, including the Pathfinder Kinect Experience. This application enables users to stand in front of a large monitor, and use movement, voice, and gestures to walk around the 2013 Nissan Pathfinder Concept, examining the exterior, bending down and inspecting the wheels, viewing the front and back, and then stepping inside to experience the upholstery, legroom, dashboard, and other details.

    Nissan worked with IdentityMine and Critical Mass to create the Kinect-enabled virtual experience, which was initially shown at the Chicago Auto Show in early February. The application is continuing to be refined, taking advantage of the Kinect natural user interface to enable manufacturers to showcase their vehicles in virtual showrooms.

    “Using motion, speech, and gestures, people will be able to get computers to do more for them,” explain Greenberg. “You can imagine this Pathfinder solution being applied in different ways in the future - at trade shows, online, or even at dealerships - where someone might be able to test drive a physical car, while also being able to visualize and experience different configurations of the car through its virtual twin, accessorizing it, changing the upholstery, et cetera.”

    Also demonstrated at TechForum was a new kind of shopping cart experience, which was developed by mobile application studio Chaotic Moon. This application mounts a Kinect for Windows sensor on a shopping cart, enabling the cart to follow a shopper - stopping, turning, and moving where and when the shopper does.

    Chaotic Moon has tested their solution at Whole Foods in Austin, Texas, but the application is an early experiment and no plans are in place for this application to be introduced in stores anytime soon.  Conceivably, Kinect-enabled carts at grocery stores, shopping malls, or airports could make it easier for people to navigate and perform tasks hands free. “Imagine how an elderly shopper or a parent with a stroller might be assisted by something like this,” notes Greenberg. 

     “The Kinect natural user interface has the potential to revolutionize products and processes in the home, at work, and in public places, like retail stores,” continues Greenberg. “It’s exciting to see what is starting to emerge.”

    Kinect for Windows team

Page 4 of 11 (103 items) «23456»