• Kinect for Windows Product Blog

    New Director, Same Direction: the Momentum Continues with Kinect for Windows

    • 3 Comments

    Almost two years ago, Microsoft announced its intent to take Kinect beyond gaming and make it possible for developers and businesses to innovate with Kinect on computers. The Kinect for Windows team was born.

    Shortly after that, I joined the team to oversee Program Management, and over the past year, we’ve shipped the Kinect for Windows sensor as well as multiple updates to the Kinect for Windows software development kit (SDK). Throughout it all, Craig Eisler has been leading our business.

    This month, Craig is moving on to do other important work at Microsoft, and I am stepping in to lead the Kinect for Windows team. I am excited to maintain the amazing momentum we’ve seen in industries like healthcare, retail, education, and automotive. There have been more than 500,000 downloads of our free SDK, and the Kinect for Windows sensor can be purchased in 39 regions today.

    Such rapid growth would not have been possible without the community embracing the technology. Thanks to all of you—business leaders, technical leaders, creative visionaries, and developers—Kinect for Windows has been deployed across the globe. The community is developing new ways for consumers to shop for clothing and accessories, interesting digital signage that delights and inspires customers, remote monitoring tools that make physical therapy easier, more immersive training and simulation applications across multiple industries, and touch-free computing tools that enable surgeons to view patient information without having to leave the operating room. The list goes on and on…and the list is growing every day.

    We launched Kinect for Windows nearly one year ago—pioneering a commercial technology category that didn’t previously exist. I look forward to continuing to be at the forefront of touch-free computing and helping our partners develop innovative solutions that take the natural user interface vision even further. We’ve said it before and I’ll say it again: this is just the beginning. I’m thrilled to continue the great foundational work we did in 2012 and look forward to a very productive 2013.

    Bob Heddle
    Director, Kinect for Windows

  • Kinect for Windows Product Blog

    Kinect for Windows Academic Pricing Update

    • 2 Comments

    Shortly after the commercial release of Kinect for Windows in early 2012, Microsoft announced the availability of academic pricing for the Kinect for Windows sensor to higher education faculty and students for $149.99 at the Microsoft Store in the United States. We are now pleased to announce that we have broadened the availability of academic pricing through Microsoft Authorized Educational Resellers (AERs).

    Most of these resellers have the capability to offer academic pricing directly to educational institutions; academic researchers; and students, faculty, and staff of public or private K-12 schools, vocational schools, junior colleges, colleges, universities, and scientific or technical institutions. In the United States, eligible institutions are accredited by associations that are recognized by the US Department of Education and/or the State Board of Education. Academic pricing on the Kinect for Windows sensor is currently available through AERs in the United States, Taiwan, and Hong Kong SAR.

    Within the academic community, the potential of Kinect for Windows in the classroom is generating a lot of excitement. Researchers and academia in higher education collaborate with Microsoft Research on a variety of projects that involve educational uses of Kinect for Windows. The educator driven community resource, KinectEDucation, encourages developers, teachers, students, enthusiasts and any other education stakeholders to help transform classrooms with accessible technology.
     
    One such development is a new product from Kaplan Early Learning Company, the Inspire-NG Move, bundled with the Kinect for Windows sensor. This bundle includes four educational programs for children age three years and older. The programs make it possible for children to experience that hands-on, kinesthetic play with a purpose makes learning fun. The bundle currently sells for US$499.

    “We’re excited about the new learning models that are enabled by Kinect for Windows,” stated Chris Gerblick, vice president of IT and Professional Services at Kaplan Early Learning Company. “We see the Inspire NG-Move family of products as excellent learning tools for both the classroom and the home.”

    With the availability of academic pricing, we look forward to many developments from the academic community that integrate Kinect for Windows into interactive educational experiences.

    Michael Fry
    Business Development, Strategic Alliances
    Kinect for Windows

    Key Links

     

  • Kinect for Windows Product Blog

    Jintronix makes rehabilitation more convenient, fun, and affordable with Kinect for Windows

    • 2 Comments

    A stroke can be a devastating experience, leaving the patient with serious physical impairments and beset by concerns for the future. Today, that future is much brighter, as stroke rehabilitation has made enormous strides. Now, Jintronix offers a significant advance to help stroke patients restore their physical functions: an affordable motion-capture system for physical rehabilitation that uses Microsoft Kinect for Windows.

    Jintronix offers a significant advance to help stroke patients restore their physical functions
    The folks at Montreal- and Seattle-based Jintronix are tackling three major issues related to rehabilitation. First, and most importantly, they are working to improve patients’ compliance with their rehabilitation regimen, since up to 65% of patients fail to adhere fully—or at all—with their programs.[1] In addition, they are addressing the lack of accessibility and the high cost associated with rehabilitation. If you have just had a stroke, even getting to the clinic is a challenge, and the cost of hiring a private physical therapist to come to your home is too high for most people.

    Consider Jane, a 57-year-old patient. After experiencing a stroke eight months ago, she now has difficulty moving the entire right side of her body. Like most stroke victims, Jane faces one to three weekly therapy sessions for up to two years. Unable to drive, she depends on her daughter to get her to these sessions; unable to work, she worries about the $100 fee per visit, as she has exhausted her insurance coverage. If that weren’t enough, Jane also must exercise for hours daily just to maintain her mobility. Unfortunately, these exercises are very repetitive, and Jane finds it difficult to motivate herself to do them. 

    Jintronix tackles all of these issues by providing patients with fun, “gamified” exercises that accelerate recovery and increase adherence. In addition, Jintronix gives patients immediate feedback, which ensures that they perform their movements correctly. This is critical when the patient is exercising at home.

    For clinicians and insurers, Jintronix monitors and collects data remotely to measure compliance and provides critical information on how to customize the patient’s regimen. Thus patients can conveniently and consistently get treatment between clinic visits, from the comfort of their own homes, with results transmitted directly to their therapist. This has been shown to be an effective method for delivering care, and for people living in remote areas, this type of tele-rehabilitation has the potential to be a real game changer.[2] Moreover, a growing shortage of trained clinicians—the shortfall in the United States was estimated to be 13,500 in 2013 and is expected to grow to 31,000 by 2016—means that more and more patients will be reliant on home rehab[3].

    Motion capture lies at the heart of Jintronix. The first-generation Kinect for Windows camera can track 20 points on the body with no need for the patient to wear physical sensors, enabling Jintronix to track the patient’s position in three-dimensional space at 30 frames per second. Behind the scenes, Jintronix uses the data captured by the sensor to track such metrics as the speed and fluidity of patients’ movement. It also records patients’ compensation patterns, such as leaning the trunk forward to reach an object instead of extending the arm normally.

    Jintronix then uses this data to place patients in an interactive game environment that’s built around rehabilitation exercises. For example, in the game Fish Frenzy, the patient's hand controls the movement of an on-screen fish, moving it to capture food objects that are placed around the screen in a specific therapeutic pattern, like a rectangle or a figure eight.

    There are other rehab systems out there that use motion capture, but they often require sensor gloves or other proprietary hardware that take a lot of training and supervision to use, or they depend on rigging an entire room with expensive cameras or placing lots of sensors on the body. “Thanks to Kinect for Windows, Jintronix doesn’t require any extra hardware, cameras, or body sensors, which keeps the price affordable,” says Shawn Errunza, CEO of Jintronix. “That low price point is extremely important,” notes Errunza, “as we want to see our system in the home of every patient who needs neurological and orthopedic rehab.”

    Jintronix developed the system by working closely with leaders in the field of physical rehabilitation, such as Dr. Mindy Levin, professor of physical and occupational therapy at McGill University. With strong support both on the research and clinical sides, the company designed a system that can serve a variety of patients in addition to post-stroke victims—good news for the nearly 36 million individuals suffering from physical disabilities in the United States[4].

    What’s more, Jintronix is a potential boon to the elderly, as it has been shown that seniors can reduce the risk of injury due to falls by 35% by following specific exercise programs.  Unfortunately, most home rehab regimens fail to engage such patients. A recent study of elderly patients found that less than 10 percent reported doing their prescribed physical therapy exercises five days a week (which is considered full adherence), and more than a third reported zero days of compliance.

    Jintronix is currently in closed beta testing in five countries, involving more than 150 patients at 60 clinics and hospitals, including DaVinci Physical Therapy in the Seattle area and the Gingras Lindsay Rehabilitation Hospital in Montreal. According to Errunza, “preliminary results show that the fun factor of our activities has a tangible effect on patients’ motivation to stay engaged in their therapy.”

    Jintronix is working to remove all the major barriers to physical rehabilitation by making a system that is fun, simple to use, and affordable. Jintronix demonstrates the potential of natural user interfaces (NUI) to make technology simpler and more effective—and the ability of Kinect for Windows to help high tech meet essential human needs.

    The Kinect for Windows Team

    Key links

     


    1 http://physiotherapy.org.nz/assets/Professional-dev/Journal/2003-July/July03commentary.pdf

    2 http://www.ncbi.nlm.nih.gov/pubmed/23319181

    3 http://www.apta.org/PTinMotion/NewsNow/2013/10/21/PTDemand/

    4 http://ptjournal.apta.org/content/86/3/401.full

  • Kinect for Windows Product Blog

    What's Up with CodePlex?

    • 2 Comments

    Last week we announced the release of the source code of 22 Kinect for Windows sample applications.  The developer response has been terrific and much larger than we expected.

    Some publications claimed we had open sourced “all of the code for Kinect” or the “core code of Kinect”.  Neither of these is true.  We released source code for most of our sample applications.  It’s important to understand that sample code is not the same as core code.  The purpose of the sample applications is to give developers examples of how to use particular APIs and/or to give a good starting point for a new application.  Samples do use the core APIs and Kinect for Windows platform but we have not changed anything about the licensing of those underlying components.



    The samples we’ve released show how to do things like get raw infrared data from the sensor, build an interactive kiosk that changes content when a person is detected, and track a person’s facial movements.  The samples are one of the many areas in which we are investing to make it easy for new and seasoned developers alike to build applications using Kinect for Windows.

    It was not our intention for our announcement to be misinterpreted.  It’s evident in the comments of many posts that readers understood the distinction.  It’s also been great to see the debate & discussions (I’m looking at you, Reddit :-).

    We are following up with some publications to clarify our announcement and to request they update their posts.

     

    Ben

    @benlower | kinectninja@microsoft.com | mobile:  +1 (206) 659-NINJA (6465)

    Kinect for Windows:  @KinectWindows

  • Kinect for Windows Product Blog

    Kinect Accelerator Program Seeking Innovators

    • 2 Comments

    In March, ten startups will converge on Seattle to start developing commercial and gaming applications that utilize Kinect's innovative natural user interface (NUI). As part of the Microsoft Kinect Accelerator program, they will have three months and a wealth of resources—including access to Microsoft and industry mentors—to develop, and then present their applications to angel investors, venture capitalists, Microsoft executives, media, and influential industry leaders.

    Since launching in late November, the Kinect Accelerator has received hundreds of applications from over forty countries, proposing transformative, creative innovations for healthcare, fitness, retail, training/simulation, automotive, scientific research, manufacturing, and much more.

    Applications are still being accepted, and the Kinect Accelerator team encourages you to apply. Learn more about the application process.

    The Kinect Accelerator program is powered by TechStars, one of the most respected technology accelerator programs in the world.  Microsoft is working with TechStars to leverage the absolute best startup accelerator methodologies, mentors, and visibility.  If you are considering building a business based on the capabilities of Kinect, this is a great opportunity for you.

    Dave Drach, Managing Director, Microsoft Emerging Business Team, explains that the Kinect Accelerator program is looking for creative startups that have a passion for driving the next generation of computing. “Starting in the spring of 2012, they will have three months to bring their ideas to life. What will emerge will be applications and business scenarios that we’ve not seen before,” comments Drach.

    Read more about the Kinect Accelerator program.

    Kinect for Windows team

  • Kinect for Windows Product Blog

    Microsoft’s Kinect Accelerator Begins Today

    • 2 Comments

    I am pleased to announce that the finalists for our Kinect Accelerator have arrived in ever-sunny Seattle and today are launching into a three-month program to build new products and business using Kinect. I can’t wait to see what they come up with – using Kinect, these teams have the ability to reimagine the way products are used, and perhaps even revolutionize entire industries along the way.

    Kinect Accelerator is powered by TechStars, in close collaboration with the Microsoft BizSpark program; my team and I have been working closely with the BizSpark team and others in the Interactive Entertainment Business to help develop and bring this program to life. The response to the Kinect Accelerator has been phenomenal and we expect to see remarkable innovation coming out of the program.

    Craig Eisler and other executives from Microsoft and TechStars met in February to review program applications.We were hoping to receive 100 to 150 applications, with a goal of selecting the best ten. But the worldwide entrepreneurial community completely surprised us by submitting almost five hundred applications with concepts spanning nearly 20 different industries, including healthcare, education, retail, entertainment, and more. 

    There were so many clever and innovative ideas and so many great teams it was super challenging to narrow things down – we spent many, many hours in a rigorous and highly energetic review process. We finally landed on 11 finalists from five countries, chosen based on their experience, qualifications, and the potential benefit that could result from their Kinect Accelerator.  The finalists are: 

    • Freak'n Genius – Seattle, WA
    • GestSure Technologies – Toronto, Canada
    • IKKOS – Seattle, WA
    • Kimetric – Buenos Aires, Argentina
    • Jintronix Inc.  – Montreal, Canada
    • Manctl – Lyon, France
    • NConnex – Hadley, MA
    • Styku - Los Angeles, CA
    • übi interactive – Munich, Germany
    • VOXON – New York, NY
    • Zebcare – Boston, MA

    The Kinect Accelerator will be held in Microsoft’s state of the art facility in Seattle’s vibrant South Lake Union neighborhood.Each team will be mentored by entrepreneurs and venture capitalists as well as leaders from Kinect for Windows, Xbox, Microsoft Studios, Microsoft Research and other Microsoft organizations. The teams will spend the first several weeks ideating and refining their business concepts with input and advice from their mentors, followed by several weeks of design and development.  They will present their results at an event at the end of June.

    We were so amazed by the quality, caliber, and uniqueness of the applications and teams that we decided to reward the top 100 applicants that didn’t make it into the program with a complimentary Kinect for Windows sensor. I believe we are going to see great things from many of the folks that applied to the program and we wish them all the best.

    We will share more information about the Kinect Accelerator teams and their applications on this blog in coming months. And for more information on the Kinect Accelerator program in general, go to KinectAccelerator.com.

    Craig Eisler
    General Manager, Kinect for Windows

  • Kinect for Windows Product Blog

    Kinect for Windows Helps Girls Everywhere Dress Like Barbie

    • 2 Comments

    I grew up in the UK and my female cousins all had Barbie. In fact Barbies – they had lots of Barbie dolls and ton of accessories that they were obsessed with. I was more of a BMX kind of kid and thought my days of Barbie education were long behind me, but with a young daughter I’m beginning to realize that I have plenty more Barbie ahead of me, littered around the house like landmines. This time around though, I’m genuinely interested thanks to a Kinect-enabled application. The outfits from Barbie the Dream Closet not only scale to fit users, but enable them to turn sideways to see how they look from various angles.

    This week, Barbie lovers in Sydney, Australia, are being given the chance to do more than fanaticize how they’d look in their favorite Barbie outfit. Thanks to Mattel, Gun Communications, Adapptor, and Kinect for Windows, Barbie The Dream Closet is here.

    The application invites users to take a walk down memory lane and select from 50 years of Barbie fashions. Standing in front of Barbie’s life-sized augmented reality “mirror,” fans can choose from several outfits in her digital wardrobe—virtually trying them on for size.

    The solution, built with the Kinect for Windows SDK and using the Kinect for Windows sensor, tracks users’ movements and gestures enabling them to easily browse through the closet and select outfits that strike their fancy. Once an outfit is selected, the Kinect for Windows skeletal tracking determines the position and orientation of the user. The application then rescales Barbie’s clothes, rendering them over the user in real time for a custom fit.

    One of the most interesting aspects of this solution is the technology’s ability to scale - with menus, navigation controls and clothing all dynamically adapting so that everyone from a little girl to a grown woman (and cough, yes, even a committed father) can enjoy the experience. To facilitate these advancements, each outfit was photographed on a Barbie doll, cut into multiple parts, and then built individually via the application. 

    Of course, the experience wouldn’t be complete without the ability to memorialize it. A photo is taken and, with approval/consent from those photographed, is uploaded and displayed in a gallery on the Barbie Australian Facebook page. (Grandparents can join in the fun from afar!)

    I spoke with Sarah  Sproule, Director, Gun Communications about the genesis of the idea who told me, We started working on Barbie The Dream Closet six months ago, working with our development partner Adapptor. Everyone has been impressed by the flexibility, and innovation Microsoft has poured into Kinect for Windows. Kinect technology has provided Barbie with a rich and exciting initiativBarbie enthusiasts of all ages can enjoy trying on and posing in outfits.e that's proving to delight fans of all ages. We're thrilled with the result, as is Mattel - our client."

    Barbie’s Dream Closet, was opened to the public at the Westfield Parramatta in Sydney  today and will be there through April 15. Its first day, it drew enthusiastic crowds, with around 100 people experiencing Barbie The Dream Closet. It's expected to draw even larger crowds over the holidays. It’s set to be in Melbourne and Brisbane later this year.

     Meantime, the Kinect for Windows team is just as excited about it as my daughter:

    “The first time I saw Barbie’s Dream Closet in action, I knew it would strike a chord,” notes Kinect for Windows Communications Manager, Heather Mitchell. “It’s such a playful, creative use of the technology. I remember fanaticizing about wearing Barbie’s clothes when I was a little girl. Disco Ken was a huge hit in my household back then…Who didn’t want to match his dance moves with their own life-sized Barbie disco dress? I think tens of thousands of grown girls have been waiting for this experience for years…Feels like a natural.”

    That’s the beauty of Kinect – it enables amazingly natural interactions with technology and hundreds of companies are out there building amazing things; we can’t wait to see what they continue to invent.

    Steve Clayton
    Editor, Next at Microsoft

  • Kinect for Windows Product Blog

    Kinect for Windows Technologies: Boxing Robots to Limitless Possibilities

    • 2 Comments

    Most developers, including myself, are natural tinkerers. We hear of a new technology and want to try it out, exploring what it can do, dream up interesting uses, and pushing the limits of what’s possible. Most recently, the Channel 9 team incorporated Kinect for Windows into two projects: BoxingBots, and Project Detroit.Life-sized BoxingBots are controlled by Kinect for Windows technologies

    The life-sized BoxingBots made their debut in early March at SXSW in Austin, Texas. Each robot is equipped with an on-board computer, which receives commands from two Kinect for Windows sensors and computers. The robots are controlled by two individuals whose movements  – punching, rotating, stepping forward and backwards – are interpreted by and relayed back to the robots, who in turn, slug it out, until one is struck and its pneumatic-controlled head springs up.

    The use of Kinect for Windows for telepresence applications, like controlling a robot or other mechanical device, opens up a number of interesting possibilities. Imagine a police officer using gestures and word commands to remotely control a robot, exploring a building that may contain explosives. In the same vein, Kinect telepresence applications using robots could be used in the manufacturing, medical, and transportation industries.

    Project Detroit’s front and rear Kinect cameras transmit   a live video feed of surrounding pedestrians and objects directly to the interior dashboard displays.Project Detroit asked the question, what do you get when you combine the world’s most innovative technology with a classic American car? The answer is a 2012 Ford Mustang with a 1967 fastback replica body, and everything from Windows Phone integration to built-in WiFI, Viper SmartStart security system, cloud services, augmented reality, Ford SYNC, Xbox-enabled entertainment system, Windows 8 Slate, and Kinect for Windows cameras built into the tail and headlights.

    One of the key features we built for Project Detroit was the ability to read Kinect data including a video stream, depth data, skeletal joint data, and audio streams over the network using sockets (available here as an open source project). These capabilites could make it possible to receive an alert on your phone when someone gets too close to your car. You could then switch to a live video/audio stream, via a network from the Kinect, to see what they were doing. Using your phone, you could talk to them, asking  politely that they “look, but not touch.”   

    While these technologies may not show up in production cars in the coming months (or years), Kinect for Windows technologies are suited for use in cars for seeing objects such as pedestrians and cyclists behind and in front of vehicles, making it easier to ease into tight parking spots, and enabling built-in electronic devices with the wave of a hand or voice commands.

    It’s an exciting time to not only be a developer, but a business, organization or consumer who will have the opportunity to benefit from the evolving uses and limitless possibilities of the Kinect for Windows natural user interface. 

    Dan Fernandez
    Senior Director, Microsoft Channel 9

  • Kinect for Windows Product Blog

    Partners Deliver Custom Solutions that Use Kinect for Windows

    • 2 Comments

    Kinect for Windows demos at Microsoft Worldwide Partner Conference

    Kinect for Windows partners are finding new business opportunities by helping to develop new custom applications and ready-made solutions for various commercial customers, such as the Coca-Cola Company, and vertical markets, including the health care industry.

    Several of these solutions were on display at the Microsoft Worldwide Partner Conference (WPC) in Toronto, Canada, where Kinect for Windows took the stage with two amazing demos as well as strong booth showings at the Solutions Innovation Center.

    "Being part of the WPC 2012 event was a great opportunity to showcase our Kinect-based 3-D scanner, and the response was incredibly awesome, both on stage when the audience would spontaneously clap and cheer in the middle of the scan, and in the Kinect for Windows trade show area where people would stand in line to get scanned," said Nicolas Tisserand, co-founder of the France-based Manctl, one of the 11 companies in the Microsoft Accelerator for Kinect program.

    Manctl's Skanect scanner software uses the Kinect sensor to build high quality 3-D digital models of people and objects, which can be sent to a 3-D printer to create detailed plastic extruded sculptures. "Kinect for Windows is a fantastic device, capable of so much more than just game control. It's making depth sensing a commodity," Tisserand added.

    A demo from übi interactive in Germany uses the Kinect sensor to turn virtually any surface into a 3-D touchscreen that can control interfaces, apps, and games. "Kinect for Windows is a great piece of hardware and it works perfect[ly] with our software stack," reported übi co-founder David Hajizadeh. "As off-the-shelf hardware, it massively reduced our costs and we see lots of opportunities for business applications that offer huge value for our customers."

    Snibbe Interactive created its SocialMirror Coke Kiosk to deliver a Kinect-based game in which players aim a stream of soda into a glass and then share videos of the experience with their social networks. "We were extremely excited to show off our unique Coca-Cola branded interactive experience and its unique ability to create instant ROI [return on investment] through our viral marketing component," reported Alan Shimoide, director of engineering at Snibbe.

    InterKnowlogy developed KinectHealth to assist doctors with motion-controlled access to patient records and surgery planning tools. "A true game changer, Kinect for Windows allows our designers and developers to think differently about business cases across many verticals," noted Kevin Custer, the director of strategic marketing and partnerships at InterKnowlogy. "Kinect for Windows is not just how we interact with computers, but it offers unique ways to add gesture and voice to our natural user-interface designed software—the combination of which is changing lives of customers and users alike."
     
    "Avanade has already delivered several innovative solutions using Kinect, and we expect that demand to keep growing," said Ben Reierson, innovation manager at Avanade, whose Kinect for Virtual Healthcare includes video chat for connecting clinics to remote doctors for online appointments. "Customers and partners are clearly getting more serious about the possibilities of Kinect and natural user interfaces."

    Kinect for Windows Team

    Key Links

  • Kinect for Windows Product Blog

    Monsters Come to Life with Kinect for Windows

    • 2 Comments

    A demon dog robot under constructionIt all started with a couple of kids and a remarkable idea, which eventually spawned two terrifying demon dogs and their master. This concept is transforming the haunt industry and could eventually change how theme parks and other entertainment businesses approach animated mechanical electronics (animatronics).
     
    Here's the behind-the-scenes story of how this all came to be:

    The boys, 6-year-old Mark and 10-year-old Jack, fell in love with Travel Channel's Making Monsters, a TV program that chronicles the creation of lifelike animatronic creatures. After seeing their dad's work with Kinect for Windows at the Minneapolis-based Microsoft Technology Center, they connected the dots and dreamed up the concept: wouldn't it be awesome if Dad could use his expertise with the Kinect for Windows motion sensor to make better and scarier monsters?

    So “Dad”—Microsoft developer and technical architect Todd Van Nurden—sent an email to Distortions Unlimited in Greeley, Colorado, offering praise of their work sculpting monsters out of clay and adjustable metal armatures. He also threw in his boys' suggestion on how they might take things to the next level with Kinect for Windows: Imagine how much cooler and more realistic these monsters could be if they had the ability to see you, hear you, anticipate your behavior, and respond to it. Imagine what it means to this industry now that monster makers can take advantage of the Kinect for Windows gesture and voice capabilities.

    Two months passed. Then one day, Todd received a voice mail message from Distortions CEO Ed Edmunds expressing interest. The result: nine months of off-and-on work, culminating with the debut of a Making Monsters episode detailing the project on Travel Channel earlier today, October 21 (check local listings for show times, including repeat airings). The full demonic installation can also be experienced firsthand at The 13th Floor haunted house in Denver, Colorado, now through November 10.

    To get things started, Distortions sent Van Nurden maquettes—scale models about one-quarter of the final size—to build prototypes of two demon dogs and their demon master. Van Nurden worked with Parker, a company that specializes in robotics, to develop movement by using random path manipulation that is more fluid than your typical robot and also is reactive and only loosely scripted. The maquettes were wired to Kinect for Windows with skeletal tracking, audio tracking, and voice control functionality as a proof of concept to suggest a menu of possible options.

    Distortions was impressed. "Ed saw everything it could do and said, 'I want all of them. We need to blow this out’," recalled Van Nurden.


    Todd Van Nurden prepares to install the Kinect for Windows sensor in the demon's belt 
    Todd Van Nurden prepares to install the Kinect for Windows sensor in the demon's belt

    The full-sized dogs are four feet high, while the demon master stands nearly 14 feet. A Kinect for Windows sensor connected to a ruggedized Lenovo M92 workstation is embedded in the demon's belt and, after interpreting tracking data, sends commands to control itself and the dogs via wired Ethernet. Custom software, built by using the Kinect for Windows SDK, provides the operators with a drag-and-drop interface for laying out character placement and other configurable settings. It also provides a top-down view for the attraction's operator, displaying where the guests are and how the creatures are tracking them.

    "We used a less common approach to processing the data as we leveraged the Reactive Extensions for .NET to basically set up push-based Linq subscriptions," Van Nurden revealed. "The drag-and-drop features enable the operator to control the place-space configuration, as well as when certain behaviors begin. We used most of the Kinect for Windows SDK managed API with the exception of raw depth data."

    The dogs are programmed to react very differently if approached by an adult (which might elicit a bark or growl) versus a child (which could prompt a fast pant or soft whimper). Scratching behind a hound's ears provokes a "happy dog" response—assuming you can overcome your fear and get close enough to actually touch one! Each action or mood includes its own set of kinesthetic actions and vocal cues. The sensor quietly tracks groups of people, alternating between a loose tracking algorithm that can calculate relative height quickly when figures are further away and full skeletal tracking when someone approaches a dog or demon, requiring more detailed data to drive the beasts' reactions.

    The end product was so delightfully scary that Van Nurden had to reassure his own sons when they were faced with a life-sized working model of one of the dogs. "I programmed him, he's not going to hurt you," he comforted them.

    Fortunately, it is possible to become the demons' master. If you perform a secret voice and movement sequence, they will actually bow to you.

    Lisa Tanzer, executive producer for Making Monsters, has been following creature creation for two years while shooting the show at Distortions Unlimited. She was impressed by how much more effective the Kinect for Windows interactivity is than the traditional looped audio and fully scripted movements of regular animatronics: "Making the monsters themselves is the same process—you take clay, sculpt it over an armature, mold it, paint it, all the same steps," she said. "The thing that made this project Distortions did for 13th Floor so incredible and fascinating was the Kinect for Windows technology.”

    "It can be really scary," Tanzer reported. "The dogs and demon creature key into people and actually track them around the room. The dog turns, looks at you and whimpers; you go 'Oh, wow, is this thing going to get me?' It's just like a human actor latching on to somebody in a haunted house but there's no human, only this incredible technology.”

    "Incorporating Kinect for Windows into monster making is very new to the haunt industry," she added. "In terms of the entertainment industry, it's a huge deal. I think it's a really cool illustration of where things are going."

    Kinect for Windows team


    Key Links

Page 5 of 11 (107 items) «34567»