The GIMPS project says they've found the largest prime number ever, but they're keeping quiet about what it is until they've verified it (they expect to be done in a couple of weeks.)

Pshaw. I can tell you right now what their prime number is.

Since I'm a computer scientist I'll write it down in binary.

GIMPS' LARGEST PRIME NUMBER IS (scroll down / highlight to view:)

0b

111111111111111111111111111111111111111111111111

111111111111111111111111111111111111111111111111

111111111111111111111111111111111111111111111111

111111111111111111111111111111111111111111111111

111111111111111111111111111111111111111111111111

111111111111111111111111111111111111111111111111

111111111111111111111111111111111111111111111111

111111111111111111111111111111111111111111111111

111111111111111111111111111111111111111111111111

...

111111111111111111111111111111111111111111111111

111111111111111111111111111111111111111111111111

111111111111111111111111111111111111111111111111

111111111111111111111111111111111111111111111111

111111111111111111111111111111111111111111111111

111111111111111111111111111111111111111111111111

111111111111111111111111111111111111111111111111

111111111111111111111111111111111111111111111111

111111111111111111111111111111111111111111111111

EDIT: On Saturday 9/6 another prime was found. They're also keeping mum about what this one is. But I know this one too...

EDIT2: Every new Mersenne prime also means a new perfect number is discovered; counting these two new Mersenne primes, there are now 46 known perfect numbers, all of them even. (It is conjectured, but not proven, that *all* perfect numbers are even.) To go from a Mersenne prime (which is of the form 0b111...11, where there are a prime number of 1's) to its corresponding perfect number, tack on one fewer number of 0's onto the end of the number: e.g., 0b11 (3, the first Mersenne prime) becomes 0b110 (6, the first perfect number;) 0b111 (7, the second Mersenne prime) becomes 0b11100 (28, the second perfect number) etc. (The proof that such numbers are perfect is simple; there is a more complicated proof that *all* even perfect numbers are of this form.)

EDIT: I can now reveal that the number of 1s is 43,112,609.