Der deutsche Education Blog

Microsoft Research Connections Blog

The Microsoft Research Connections blog shares stories of collaborations with computer scientists at academic and scientific institutions to advance technical innovations in computing, as well as related events, scholarships, and fellowships.

  • Microsoft Research Connections Blog

    Computer Science Education Week Spotlights the Needs in U.S. Schools


    Computer Science Education Week -

    As computer-science researchers, we at Microsoft Research are committed to strong computer-science education programs. With more than 800 researchers worldwide, we know firsthand the value of a solid computer-science education, which is why Microsoft Research is a proud supporter of the second annual Computer Science Education Week (CSEdWeek), celebrated this year from December 5-11 in the United States.

    This week's focus on computer-science education couldn't be timelier. The recent report from the Association for Computing Machinery, Running on Empty, reveals that the state of computer-science education in the United States is alarming. Only nine states count computer-science courses as a core academic subject in high-school graduation requirements. Meanwhile, there will be a projected 1.4 million new computing jobs by 2018, so we need more states to see the light and join in producing qualified students.

    Making matters worse, funding cuts in local school districts have hit computer-science programs heavily. Statistics show that in many school districts, teachers who can teach computer science are being reassigned to mathematics or science classes. How can we as a nation afford to cut corners on this vital component of a 21st-century education?

    CSEdWeek is a call to action. It's a rallying point for teachers, parents, and schools at all levels—from K-12 through college—to focus attention on this problem and to build more robust computer-science education programs throughout the United States. Corporations, too, must make their voices heard in support of policies and programs that advance the state of computer-science education. I'm proud that Microsoft is a supporter of CSEdWeek and a strong advocate of computer-science education.

    At Microsoft Research, we have a number of tools designed for high-school students, showing them how scientific computing can be part of their daily lives—and fun, as well. Two of these are showcased on our associated website:

    • Worldwide Telescope is an award-winning program that enables children to see the skies from their desktops and to explore the world.
    • Pex4Fun is a highly innovative, interactive system that helps students learn to program by dueling against a computer in a social context.

    I encourage you to give them a try!

    Recently, Chris Stephenson, executive director of the Computer Science Teachers Association, made a telling statement: "Effective computer-science education means far more than learning how to use a computer. It is about computational thinking: problem decomposition, data analysis, and solution design, all of which can be incorporated across disciplines and benefit students with interests outside of computer science. But we know that until we eliminate the roadblocks to quality computer-science education, we are denying access to important skills and future opportunities."

    Echoing the same sentiments, Rick Rashid, senior vice president of Microsoft Research, said: "Today, more than ever, we need to empower students with the enthusiasm and creative problem-solving skills needed to address some of the world's greatest challenges, from improving healthcare to reducing our impact on the environment."

    Do you want to do more to advance computer-science education? You can explore CSEdWeek resources, including tools; suggestions for celebrations, reports, and statistics lesson plans; and event listings across the United States and Canada. You also can sign this pledge in support of CSEdWeek. And please don't confine your activism to this week. Boosting the state of computer-science education in the United States is a 24/7/52 matter!

    —Judith Bishop, Director of Computer Science for the External Research division of Microsoft Research

  • Microsoft Research Connections Blog

    Bioinformatics Tools Promote Life-Saving Research


    On November 30, I appeared on Health Tech Today, where I chatted with Dr. Bill Crounse about the Microsoft Biology Foundation and how it will help scientists advance their research. This interview marks yet another opportunity for Microsoft External Research to spread the word about our open-source work in developing tools that, as Dr. Crounse noted, provide researchers with "the potential to discover amazing things and solve big problems." 

    Health Tech Today Video: Beatriz Diaz Acosta

    The heart of the interview was a discussion of the overarching goal of the Microsoft Biology Foundation, which is to develop a set of tools that enable researchers to more easily and effectively collaborate and thereby expedite new discoveries.  I explained how researchers around the world have come up with their own data formats—their own unique standards on how to encode, share, and work with data. They have developed all these individual languages, and now this profusion of tongues is impeding collaboration. In essence, we have a scientific cacophony, with researchers speaking different languages through the data.

    Through the Microsoft Biology Foundation, we're providing the building blocks to translate these many data files and formats into a common language. In addition to these file parsers, we also provide standard algorithms to assemble and align genetic sequence data, thereby obviating the need for each researcher to create his or her own unique version. Through these efforts, we're relieving researchers of onerous translation chores and allowing them to focus on solving real problems, like designing new drugs and developing new vaccines, which will ultimately save lives.

    As I discussed with Dr. Crounse, we're doing this by building an extensive and expandable library on the Microsoft .NET Framework, a technology that gives us the advantage of being interoperable with many different programming languages. I pointed out our goal of using tools like DeepZoom and Pivot to facilitate interactive visualization of massive quantities of data, such as the billions of base pairs found in the human genome. These new technologies have the potential to make it easier and more intuitive to identify patterns and spot outliers in the data. Such discoveries could lead to breakthroughs against some of the most feared diseases, including AIDS. I noted, in fact, how we are using the Microsoft Biology Foundation library to support David Heckerman's work in the eScience team at Microsoft Research, where they are working diligently to create a vaccine against HIV.

    I finished my interview with an appeal for medical researchers and biologists to visit, where they can learn more about the Microsoft Biology Initiative and its open-source tools. As I noted, we need feedback from those working on the frontlines of medicine and biology in order to improve our tools and move forward in our quest to improve human health.

    —Beatriz Diaz Acosta, Senior Research Program Manager, Health and Wellbeing, the External Research division of Microsoft Research

    Related Links

  • Microsoft Research Connections Blog

    Bill Gates Talks about mHealth


    Kristin Tolle interviews Bill Gates at the mHealth Summit 2010

    I'm here in Washington, DC, at the second annual mHealth Summit, where I gave a talk and conducted a keynote interview with Bill Gates. During a wide-ranging discussion, Bill stressed that improved health is the key to controlling many of the world's most challenging problems. In keeping with the mHealth theme, Bill discussed the role of the mobile technology—especially the cell phone—as a tool for improving medical services in various populations.

    Here are just a few of the highlights of the Q&A:

    Kristin: You've stated that the mobile phone, like other computing platforms before it, is not the panacea for healthcare. Given the cell phone's ubiquity, what are your thoughts on the possible advantages over the preceding technologies?

    Bill: Computing technology has been great for healthcare, but primarily on the research side. Although it would be difficult to measure, some combination of the Internet, digital database, and collaboration tools really have changed medical research. In the case of the cell phone, there's a chance to go beyond that and actually be there with the patient, there in the clinic, which might not be staffed with a fully trained doctor. So there's a lot of opportunity, but we have to approach these things with some humility. There's not always Internet and data connections out there, and when people are sick they are often too late for some cell phone type application to do something for them. There's absolutely a role, but we have to hold ourselves to some pretty tough metrics.

    Kristin: So what, then, do you see as the main applications for mobile health, and what specifically will be most impactful?

    Bill: I think it is always valuable to go back and ask what the key metric is you're trying to improve. Maybe the simplest one is the number of kids who die each year under the age of five, which is about 8.5 million. If you go back to 1960, that was about 20 million, so there's been a pretty dramatic reduction. About a third of that's been achieved by an increase in income, which gives you better nutrition and better living conditions, but the majority of it's been done through vaccines. Smallpox was killing 2 million a year; now it kills zero a year. Measles was killing a million and a half; now it's killing about 300,000 a year.

    So, now we say to ourselves, what can we do with this 8.5 million? That actually breaks into two parts: There's the first 30 days of life, which is about 3.5 million deaths, and then there's the 30 days to 5 years, which is about 5 million deaths. There again, vaccines are going to be the key—malaria vaccines, respiratory, diarrheal—but the question is, how will cell phones fit in? If you could register every birth on the cell phone, get the fingerprints and get a location, then you could go around and make sure the immunization happens. Vaccination coverage in some poorest areas, like the north of Nigeria and the north of India, are below 50 percent. So you could get a huge improvement if you could just take the vaccines we have today and get those delivered.

    So when I think about the biggest impacts [for mHealth], I think of patient reminders, improvements in the supply chain for medical goods—making sure there's no counterfeits and no stock-outs—and finally, this sort of digital patient record, where the high payoff is vaccination coverage.

    Kristin: In regards to the Gates Foundation Grand Challenges, you've had two calls now and are about to announce a third, can you tell me what type of projects have been funded?

    Bill: We're in a phase now where we are doing these Exploration Grants, which are kind of small, $100,000 each, trying to catch a set of wild ideas and people who wouldn't ordinarily apply. We've done some in mobile health ... If you want to do cheap diagnostics, the idea that your communication screen comes from the mobile phone and all you have to do is sample preparation and signal detection and then that whole backend is just sitting there for free, it's clearly a huge win. Some of these diagnostic things, in malaria or TB, will probably be the first areas where we'll be able to say without this mobile phone application people would have died.

    Kristin: You've said that R&D can prevent future disasters and that research investments are important to mitigate some of the problems facing the world. These problems are vast and diverse, and often dependent on location. Do you believe generalizations can be made, and if so, what are they?

    Bill: In general, the world underfunds research because the person who takes the risk of doing the research doesn't capture the full benefit of having done it. Capitalism does amazing things, but it has this systemic problem in terms of research not doing enough, and it has another systemic problem in that the needs of the poorest won't be prioritized the way they would if you put a more human-values driven system in. Of course government steps in for things that the market doesn't work well on, such as funding for basic research. The Gates Foundation tries to take the diseases of the poorest and fulfill that role that the market-driven signals aren't going to.

    How do we get more investment in research? Well, the Internet is a great platform. The world as a whole is getting more science and engineering graduates. And so whether it's energy or biology or robots or software, people underestimate the amount of innovation that's going on. Part of the reason people have such bleak views is that they assume technology stays the same.

    Kristin: How does education lead to better healthcare outcomes?

    Both health and education are great examples of behaviors where you have to put in effort now for a benefit that comes a lot later. It's like when kids drop out of high school—did nobody tell them that the fun jobs are the ones that pay really well and you're not going to get one? And likewise with health, there are some things that are pretty straightforward. We had an experience in South Africa where we saw that awareness of AIDS was very low among teenagers, which is where the disease acquisition was taking place. So we said, let's raise awareness. And we did. We were the biggest billboard buyer in the country, and we drove awareness up to 97 percent. We'd ask people "How do you get AIDS?" and they could explain it. "How do you stop yourself from getting AIDS?" and they could explain it. And we saw no behavior change. When we interviewed people, we found that the time horizon is such that a disease which is seven or eight years out when compared to the here and now activity is just not that big. If AIDS killed immediately it would be better, because you'd see these piles of bodies outside of bars or brothels and people would think "I don't know if I want to go in there or not. It looks suspicious."

    Kristin: What about the one-off nature of mHealth projects? How do we break down silos?

    Bill: Look for problems with gigantic scale, where several hundred thousand deaths a year could be avoided if it was solved well ... things like vaccine coverage, TB drug follow-up, and TB diagnosis. The lens of did-it-work has to be a very tough one ... because it's possible to see things that worked in the microcosm but then, when you scale it up, it's not going to work that well.

    Kristin: So, we're saving these people and letting them have a better quality of life, but is that really true? Are we just letting them live on to face harder challenges to come, particularly in slum areas like Mumbai, where population growth is actually outstripping the city's population growth.

    Bill: Most of the world's population growth is in urban slums. The key thing in this question—the most important fact that people should know and make sure other people know—is that as you improve health and save children under five, that reduces population growth. That sounds paradoxical, but within a decade of improving health outcomes, parents decide to have fewer children. There is no such thing as a healthy, high-population growth country. No matter what problem you care about, environment, schools, nutrition, unrest, the key thing is that those problems are insoluble at a 3 percent per year population growth rate.

    In these developing countries, by age five, over a third of the kids have had some insult in terms of cerebral malaria, birth asphyxiation, parasitemia, not enough nutrition because of diarrhea. [Consequently] their brain is not developed properly and so they're never going to be a fully productive member of society. The same thing that gets rid of the death gets rid of the sickness, the morbidity, and so it's a huge payoff.   

    Kristin: What's the next big thing in technology?

    Bill: Robots. If you don't want to go to a convention, just send a robot. Seriously, though, there are a lot of medical procedures that can be done by robots. When we look at something like infant mortality, there's a certain level you can't get below if you can't do C-sections. C-sections require a sterile environment, but the procedure itself is fairly routine and could be done by a robot.

    Computers are learning to see, learning to talk, learning to listen, and learning to move around. This is where robotics is headed. The dexterity things are maybe five years behind, but they'll come. And once a robot learns a task, it doesn't forget how to do it. It can do it 24 hours a day.

    As a founding sponsor of the mHealth Summit, Microsoft External Research is committed to using mobile technology to promote healthcare for underserved populations around the world, whether they are found in the jungles of the Brazil, the slums of Mumbai, or rural areas of the United States. Through our Cell Phone as a Platform for Healthcare Initiative, Microsoft External Research is collaborating with academics and researchers around the world, providing them with the tools, technologies, and resources needed to develop creative and novel healthcare solutions that are accessible, affordable, and easy to use, helping to mitigate the growing healthcare concerns in underdeveloped nations around the globe. Through collaborations with the academic research community, Microsoft Research aims to tackle healthcare problems through mobile technology and ultimately further the understanding and treatment of diseases affecting millions worldwide.

    —Kristin M. Tolle, director of Natural User Interactions, the External Research division of Microsoft Research

    Learn More


Page 109 of 125 (374 items) «107108109110111»