Der deutsche Education Blog

Microsoft Research Connections Blog

The Microsoft Research Connections blog shares stories of collaborations with computer scientists at academic and scientific institutions to advance technical innovations in computing, as well as related events, scholarships, and fellowships.

  • Microsoft Research Connections Blog

    Layerscape for Earth-Science Storytelling

    • 1 Comments

    Layerscape: Enabling Earth scientists to explore planet EarthEvery so often, a new platform comes along that really shakes things up. Well, if you’re part of the earth-sciences community, prepare to be shaken, because Microsoft Research has just released a new way to convey earth-science concepts. It’s called Layerscape, and I like to think of it as a storytelling medium, since transmitting scientific ideas, especially those involving complex datasets, comes down to creating narratives. I work on earth-science storytelling at Microsoft Research Connections, and I’d like to walk you through just a couple of the many features of Layerscape.

    First, let me explain that Layerscape is a data visualization engine that was originally developed as WorldWide Telescope (WWT), an astronomical observatory housed within your PC. WWT was and is a wonderful tool for exploring the heavens, but right from the start is was more than just a powerful telescope on your PC. It is also a treasure trove of information drawn from cumulative scholarly publications and databases, including SIMBAD (the Set of Identifications, Measurements, and Bibliography for Astronomical Data), which gives you a list of objects visible in any particular corner of the night sky.

    And if you think the sky’s the limit, then think again, because soon after it was developed, WWT had expanded beyond astronomy, adding, among other things, a careful construction of the Earth, textured with fine-scale imagery courtesy of Bing Maps. Now earth science has become the central theme in the next phase of WWT’s life, with Layerscape as the digital ecosystem for creating and sharing three-dimensional visual stories based on earth-science data.

    The first feature of Layerscape I want to describe is communities. At the Layerscape website, under the “Browse by” drop-down, you will find content categories (Life Science, Climate, and so forth) that organize existing content. The communities feature, by contrast, lets you build structure around your own content. You can create a community around any idea you like and add whatever content you wish. What’s more, you can create WWT tours, which are special narratives built around data.

    Once your community exists, you can selectively invite participants to join, or you can throw it open to the public. Let’s suppose you’ve gone the public route, and I decide to subscribe to your community. Now I can see what’s in your community and, in particular, I can load and view your tours directly on my computer. And since the tours’ underlying data is included, I can look beyond your narrative to explore the data for myself.

    Okay, so what can I do with your data? Lots. This brings me to the second of Layerscape’s many features, what I will call “separation of data from perspective.” This feature works on data that exists in three dimensions and has a temporal aspect, allowing you to animate the data to see it unfold over time (probably at an accelerated or decelerated pace)—while you fly around examining it from any perspective or viewing angle you like.

    Layerscape user interfaceFor example, I’m currently building a tour from data compiled by Gavin Hayes of the U.S. Geological Survey’s National Earthquake Information Center. In particular, I’m exploring Gavin’s data on subduction slabs, those enormous, 500-kilometer-thick boundaries where tectonic plates shove one another around. That data is pretty interesting, especially when you use WTT’s time control to speed it up by a factor of 10,000. Doing so enables me to see the recorded earthquakes, which betray the subduction slabs’ structure, popping off like fireworks all around the slabs. Better yet, I can use Layerscape’s separate perspective control to watch the action from many different angles. I can look at the data glowing down in the depths below, or I can fly down inside the Earth and look back up at it. This lets me create stories around the data that hadn’t been told before—stories that can change how we explore and come to understand our increasingly complex data.

    I can’t wait to see stories you’ll create with Layerscape! Try out the Layerscape beta, create virtual tours, and participate in communities where you can share your content and provide feedback.

    Rob Fatland, Program Manager, Microsoft Research Connections

    Learn More

    • Layerscape Beta
    • Layerscape Project
    • Earth, Energy, and Environment at Microsoft Research Connections
    • WorldWide Telescope

  • Microsoft Research Connections Blog

    Jim Gray eScience Award Winners Announced

    • 0 Comments

    The Jim Gray eScience Award—named for Jim Gray, a Technical Fellow at Microsoft Research and a Turing Award winner who disappeared at sea in 2007—recognizes innovators whose work makes science easier for other scientists.

    It was a special pleasure to be part of the audience in Stockholm as Tony Hey, corporate vice president of Microsoft Research Connections, presented the 2011 award to Mark Abbott at the Microsoft Research eScience in Action Workshop. Mark Abbott is dean and professor in the College of Oceanic and Atmospheric Sciences at Oregon State University. He is also serving a six-year term on the National Science Board, which oversees the National Science Foundation and provides scientific advice to the White House and to Congress. I was very proud to be part of the eScience research community as we applauded Mark for his career-long contributions to integrating biological and physical science, making early innovations in data-intensive science, and providing educational leadership.

    Get Microsoft Silverlight

    After the applause, the audience learned that another award recipient was to be announced. Technically, the Jim Gray eScience Award was started in 2007, but the first award was presented in 2008. However, the 2007 award ceremony was put on hold due to Jim’s disappearance. That year, Tony Hey publically recognized Alex Szalay, a professor in the Department of Physics and Astronomy at John Hopkins University, for his foundational contributions to interdisciplinary advances in the field of astronomy and groundbreaking work with Jim Gray, but did not present him with an award. Now after four years, Tony Hey was able to call Alex to the stage and formally present him with the 2007 Jim Gray eScience Award. This began a great evening as we sat back to enjoy Mark Abbott’s view on how “data-intensive science is more than just speeds and feeds.” 

    Please join me in paying tribute to these two outstanding researchers who have advanced Jim Gray’s vision of data-intensive science.

    Harold Javid, Chair of 2011 Microsoft eScience Workshop

    Learn More

  • Microsoft Research Connections Blog

    On World AIDS Day, HIV Research Provides a Ray of Hope

    • 0 Comments

    On World AIDS Day, HIV Research Provides a Ray of HopeThe first documented case of HIV was in 1981. Today, HIV is viewed as a treatable, chronic disease by many in developed nations where treatments are readily available. Yet HIV continues to devastate, claiming the lives of 1.8 million people annually—about 5,000 deaths per day. Those fortunate enough to have access to treatment must arrange their lives around a strict treatment regime that can overshadow everyday activities. On this World AIDS Day, we are taking time to focus on this global crisis, and to remember that the battle is not over. We would also like to shine a light on a possible weapon in the battle to stop the virus: an HIV vaccine.

    HIV remains a threat throughout the world. It has been particularly devastating in the sub-Saharan region of Africa, where two-thirds of the population is HIV positive by age 25. The occurrence of HIV is higher for women than men; an estimated one in three women seeking care during pregnancy is HIV positive. By age 35, the infection rate for men rivals that of women in the region.

    The South African government offers free antiretroviral (AVR) therapy for HIV-positive residents. The precision timing required by AVR therapy is a dominant factor in the life of any HIV-positive individual. For Purity, a 30-year-old resident of the KwaZulu-Natal province in South Africa, it is a constant struggle. “Early in the morning at 8:00, I take Tenofovir and Lamivudine. After I eat my breakfast, I take Bactrim and vitamins. In the evening, at 8:00, I take Stocrin and Lamivudine.”

    Get Microsoft Silverlight

    Purity does not know exactly when she contracted HIV. She knew she was ill, and sought treatment at the hospital. She was diagnosed with tuberculosis and then soon after, HIV. “I thought my life was over,” she remembers. “People told us that if you are HIV positive, you’re dead—you’re not going to live. But there is always hope. There is always a way. And I’m here today. I’m fine.”

    Purity hopes for a cure for those who already have HIV. She also hopes that a vaccine will be developed to prevent others from contracting HIV and suffering the physical, mental, and emotional pain that HIV has inflicted upon her life. Until that time, she has a message of hope for those who contract the virus.

    “If I met somebody [who was] HIV positive, I would tell them to hold on. They are still alive. There’s hope,” she said. “They must dream, because that’s what keeps me going. Dreams—dreams and hopes. Because if you don’t have hope and dreams, you see yourself as good as dead.”

    The Search for a Vaccine

    Researchers are working hard to make Purity’s dream of a cure—or at least a vaccine—come true. A number of HIV vaccines are in various stages of development. A notable HIV vaccine effort is being led by Bruce Walker, director of the Ragon Institute at Massachusetts General Hospital, MIT and Harvard, and a professor of medicine at the University of KwaZulu-Natal. Walker is leading a multi-organizational effort to test a vaccine in Durban, South Africa—the epicenter of the African HIV epidemic. Joining Walker and the Ragon Institute are the Centre for the AIDS Programme of Research in South Africa (CAPRISA) and the KwaZulu-Natal Research Institute for Tuberculosis and HIV (K-RITH). Microsoft Research is working with the Ragon Institute to quantify how the immune system attacks various fragments of HIV—data that we hope will, one day, lead to a vaccine or possibly even a cure.

    Understanding HIV

    One of the biggest challenges we face in building a vaccine for HIV is that HIV mutates a lot. How much? Well, consider this: if you look at all the mutations that have ever occurred in the influenza virus—the virus that causes the flu—you’ll see about the same amount of mutation of HIV in a single individual who has contracted the virus. You’ve heard how difficult it has been to develop an effective flu vaccine. Imagine how difficult it is to create a vaccine for HIV.

    Difficult does not mean impossible, however. While HIV does have a strong evolutionary advantage—its ability to mutate—we believe it also has an “Achilles heel.” There are certain fragments of HIV that, we believe, when attacked by our immune system, will become sick and die. We are cataloguing those fragments of HIV that we know are vulnerable to attacks by the immune system. Once that is done, we plan to develop a vaccine that will train our immune systems to attack just those fragments of HIV, and ignore all the other parts of the virus that are not vulnerable.

    To catalog the vulnerable fragments of HIV, we’re taking data from many individuals in South Africa and correlating that data with how the patient’s body is reacting to the virus. Is it controlling HIV? Or is the virus continuing to copy itself and survive? We’re also sorting through the different mutations of HIV to identify when and where the immune system attacks, and how HIV mutates in response.

    It’s an incredibly daunting task: there are millions of possible combinations to sort through. It would take years to process the volume of data we receive on a single computer. Therefore, we’re committing thousands of machines to this task, using an algorithm we developed at Microsoft Research called PhyloD. Combined, our hardware and software can complete the analysis in just hours—a critical advantage in the fight against HIV. We send the information back to Ragon in Africa and we then work together to identify follow-up experiments. In addition to our targeted research, we have also made some general discoveries that are applicable to all immune system research—not just HIV.

    Fighting More Than Just HIV

    We are continuing to work towards a better understanding of the breadth and complexity of the immune system—not just how it reacts to HIV and the virus’ mutations. For example, over the course of this research, we have discovered that some fragments of the immune system are stronger than others. We have also uncovered another component of our immune system that attacks HIV: natural killer cells.

    These and other discoveries made through our research have the potential to help millions through the prevention of HIV and perhaps, one day, a cure. It could also have ramifications for research on how the immune system responds to other diseases, such as cancer and diabetes. Until the day we find a vaccine and perhaps even a cure, World AIDS Day will continue to remind us that the fight against HIV has not yet been won.

    David Heckerman, Distinguished Scientist, Microsoft Research Connections

    Learn More

Page 67 of 112 (335 items) «6566676869»