Der deutsche Education Blog

Microsoft Research Connections Blog

The Microsoft Research Connections blog shares stories of collaborations with computer scientists at academic and scientific institutions to advance technical innovations in computing, as well as related events, scholarships, and fellowships.

  • Microsoft Research Connections Blog

    Understanding the Immune Response to HIV

    • 1 Comments

    Understanding the Immune Response to HIV

    HIV infection may not be the death sentence it once was, but it remains an undeniably serious condition that requires aggressive, life-long treatment and entails the ever-present threat of severe immunological impairment. Consequently, medical researchers continue to investigate the mechanisms by which HIV infection evades detection by the body’s normal immune responses. In the August 3, 2011, issue of Nature, investigators from the Ragon Institute of MGH, MIT, and Harvard; Imperial College London; the National Cancer Institute; and Microsoft Research have shed light on the interactions of HIV and the immune system’s natural killer (NK) cells. Our paper is the first to show that NK cells play a direct role in fighting HIV. This knowledge opens a new path of research into ways to beat the virus.

    Scientists have long known that NK cells play an important role in the control of viral infections, mounting short-lived but highly toxic assaults on infected cells. NK cells bind to virus-infected cells, releasing proteins that destroy the target cells. To regulate this cytotoxic potential, the membranes of NK cells are studded with activating receptors, which unleash the cell-killing response, and inhibitory receptors, which keep it in check.

    It’s logical to expect that NK cells would play a role in the control of HIV infections, and, in fact, various in-vitro and epidemiological studies suggest that NK cells do just that. For example, research has shown that the population of NK cells increases during the earliest phase of HIV infection and that NK cells can suppress HIV replication in cultured tissues. Moreover, epidemiological evidence indicates that infected individuals who have particular versions of the genes that code for a class of NK cell receptors called KIRs (killer immunoglobulin-like receptors) are better able to control HIV levels. However, it remained unknown whether NK cells directly mediate anti-HIV immune pressure inside the human body.

    We wanted to test the hypothesis that mutations in the HIV proteins that are recognized by KIRs could allow the virus to escape NK cell activity. Proving this hypothesis would support a role for NK cells in HIV control. After analyzing the sequences of both HIV proteins and the genes encoding KIR molecules from 91 infected individuals, we found that particular variants in viral proteins were associated with specific KIR genes. This finding suggested that the virus mutates in response to NK cell activity. In particular, we found individuals whose NK cells included an inhibitory receptor called KIR2DL2 were more likely to have variant forms of HIV that enhance viral interaction with that receptor. Those results suggest that the HIV mutates into a form that interacts with the inhibitory receptor, thereby preventing NK cells from attacking HIV-infected cells.

    Microsoft Research was intensely involved in this study. The first tell-tale signs that NK cells were affecting HIV were found by using a sophisticated software tool that was developed at Microsoft Research. The tool used almost a CPU-year of computation to sift through millions of possible clues as to how our immune system interacts with this deadly virus.

    Our study provides hope that a greater appreciation of the NK-cell-mediated immune responses to HIV can lead to therapies that interrupt the virus’s evasive processes, thereby giving physicians another weapon in their long-running battle with HIV and AIDS.

    David Heckerman, Distinguished Scientist, Microsoft Research

    Learn More

  • Microsoft Research Connections Blog

    Kinect for Windows SDK Beta Refresh Available

    • 4 Comments

    Kinect for Windows SDK beta refresh available for download

    Interest in the Kinect for Windows Software Development Kit (SDK) beta, released on June 16, 2011, has been strong, and we’re delighted to learn that so many developers and innovators who are experimenting with natural user interface (NUI) applications have taken advantage of the SDK to explore the potential of the Kinect sensor.

    In support of our commitment to encourage researchers and enthusiasts in their exploration of the exciting possibilities of the Kinect sensor, we have now released a refreshed version of the SDK. The community has provided us with a lot of good feedback, and this release addresses some of the top items you’ve told us about.

    Before summarizing the updates, let’s quickly recap the key features of the Kinect for Windows SDK beta. This non-commercial SDK beta enables human motion tracking, voice recognition, and depth sensing on PCs, enabling developers to create innovative natural user interface applications. The SDK includes drivers and rich APIs for raw sensor streams and natural user interfaces, as well as installation documents and resource materials.

    So, what’s in the refresh?

    • Driver enhancements: stability fixes to prevent crashes, including those that appear when a PC goes into sleep mode
    • Runtime enhancements: refinements to a number of APIs, improvements in time-stamping, and the removal of non-functional APIs to alleviate confusion (they will be reinserted if and when the functionality becomes available in future releases)

    The refresh also includes many improvements to the documentation, including clarifications and the deletion of information pertaining to non-functional components. Also, the SDK samples have been enhanced.

    If you’re an academic researcher or an enthusiast who wants to take advantage of the latest developments in natural user interface experimentation, we encourage you to learn more about and download the Kinect for Windows SDK beta refresh. We plan on releasing the next refresh of the Kinect for Windows SDK beta later this year (still with a non-commercial license).

    Let us know what you think—as this refresh demonstrates, we’re committed to using your feedback to make the best possible SDK!

    Tony Hey, Corporate Vice President, Microsoft Research Connections

    Learn More

  • Microsoft Research Connections Blog

    Functional Lens Promises to Improve the Quality of Life for Diabetics and Others

    • 10 Comments

    Functional Lens Promises to Improve the Quality of Life for Diabetics and Others

    Millions of people worldwide live with type 1 diabetes, a potentially devastating disease with no known cure. People who have type 1 diabetes do not produce insulin in their pancreas, so they must constantly monitor their blood sugar levels while balancing food intake against insulin intake. It’s a mentally taxing, painful process that must be repeated throughout the day.

    A collaboration between Associate Professor Babak Parviz at the University of Washington (UW) and Microsoft Senior Researcher Desney Tan is focused on developing a non-invasive, technological solution that promises to improve both the health and overall quality of life for people with diabetes: a contact lens that monitors blood glucose levels. The functional lens technology is representative of a trend in technology known as Natural User Interface (NUI).

    NUI technology has the potential to provide user benefits without being obvious to others or intrusive to the user. We believe it has tremendous potential in the healthcare industry, where technology is a necessary, but not always pleasant, part of a patient’s diagnosis or care. The functional contact lens is an excellent example of how NUI can change patient monitoring from “snapshots” of information to continuous health monitoring that could potentially improve the wearer’s overall health—especially for those with a chronic disease, such as diabetes.

    Today, people with type 1 diabetes use needles to draw blood from their fingers multiple times throughout the day—every day, including meal times—to check their blood glucose levels. By monitoring their glucose levels, they can more easily ensure that they maintain an acceptable glucose level, which is critical to optimal health and longevity for diabetes patients.

    Get Microsoft Silverlight

    The Daily Impact of Diabetes

    Daily, repeated blood draws are a painful necessity for people with diabetes. This process has limitations because the monitoring is only periodic. Diabetics may experience glucose fluctuations that require correction—for example, by increasing insulin intake or eating a piece of candy to raise their blood sugar level—anytime of the day. Regular glucose monitoring, in addition to sensible dietary choices, are part of daily life for Kevin McFeely, who was diagnosed with type 1 diabetes 30 years ago, and his two young children, who also have diabetes.

    “If I don’t check my blood sugar, or my children don’t check their blood sugar daily, there are some different things that could potentially happen,” he explained. “If my blood sugar gets too high, I have noticed that my vision begins to blur, I begin feeling nauseous, very, very tired, and just almost physically sick. And potentially, if I let that go, I could pass out from having high blood glucose.”

    Low blood sugar also presents a danger to people with diabetes. If glucose falls too low, a diabetic may begin to sweat, suffer an elevated heart rate, and potentially lose consciousness. So it is critical that diabetics monitor their blood glucose on a regular basis throughout the day. McFeely’s children, who are ages seven and ten, are responsible for managing their disease and monitoring themselves at school throughout the day.

    “I’m used to testing myself six to eight times per day. I’ve been doing it for 30 years,” McFeely says. “But boy, when I think about my children… I mean, you have a spring-loaded needle that’s coming into your finger, and it hurts them. I can see their faces [when they test], and I can see them cringe.”

    A New Approach to Monitoring Health

    As envisioned, the lens would be worn daily, just like regular contact lenses. But instead of, or in addition to, correcting vision, the lens would monitor the wearer’s glucose level through their tears. Much of the information that can be obtained through blood testing is also accessible on the surface of the eye. The functional lens is being designed to sample eye fluid, analyze it, and transmit the information to a reporting machine. A tiny radio transmitter embedded in the lens will handle the information transfer.

    Parviz’s team at UW has built a variety of contact lenses with small radios and antennas built in, enabling them to draw power as well as send and receive information through radio frequencies. Also, the UW team has been able to place a glucose sensor on the contact lens and demonstrate that it can detect glucose at levels that are found in the tear film. The goal is to unite these elements to develop a contact lens that constantly monitors the blood glucose level and records information that can be accessed later by the patient’s doctor.

    McFeely is hopeful that technology, like the functional contact lens, can improve the monitoring and care options available to his children. “Thinking about the functional contact lens for my children who are both type 1 diabetic—I think that would be incredible,” he said. “Given that my children are diagnosed at such a young age, it does have the potential to help them live a longer, healthier life.”

    Visualizing Future Applications

    Ideally, the lens will do more than just record information. The UW team envisions a way to automatically display important information—including abnormal glucose or insulin alerts—in the lens wearer’s view. It could alert the wearer when they should stop eating due to glucose levels, or remind them when it’s time to get a snack. This real-time feedback would empower the user to react quickly, avoiding health-threatening or uncomfortable episodes. The visual information would be dormant the rest of the time, adhering to the NUI idea of being unobtrusive until needed.

    Once fully developed, the technology could be used to replace virtually any screening or diagnostics that currently depend upon blood draws. Additionally, the researchers who are involved in the project envision a future in which contact lenses deliver medicine directly into the bloodstream through the cornea.

    Kristin Tolle, Director, Natural User Interface, Microsoft Research Connections

    Learn More

     

Page 77 of 112 (335 items) «7576777879»