Der deutsche Education Blog

Microsoft Research Connections Blog

The Microsoft Research Connections blog shares stories of collaborations with computer scientists at academic and scientific institutions to advance technical innovations in computing, as well as related events, scholarships, and fellowships.

  • Microsoft Research Connections Blog

    Chinese University Students Push the Boundaries of Kinect for Windows


    When Microsoft Research unveiled the Kinect for Windows Software Development Kit (SDK) beta in mid-June, we expected it would be popular with academic and enthusiast developer communities. But even with our high expectations for the SDK, we didn’t anticipate the level of creativity that was demonstrated by the Chinese university students who participated in the Kinect Pioneer Program. Given the opportunity to develop Windows applications that take advantage of the Kinect sensor, these students have created some truly remarkable projects.

    Students collaborating and sharing demos at the China Kinect Student Summer CampStudents collaborating and sharing demos at the China Kinect Student Summer Camp

    Kinect Pioneer Program Encourages Students to Innovate

    The Kinect Pioneer Program was introduced by Microsoft Research Asia in May 2011, in anticipation of the release of the non-commercial Kinect for Windows SDK beta. The program, which involved eight Chinese universities, established 25 student teams that intensely competed to create the most elegant and practical applications. By using Kinect sensor technology, the students generated applications that use depth sensing, voice and object recognition, and human motion tracking, and that are applicable to diverse topics: from education to commerce to culture and history. Six pioneer teams were selected to attend the 2011 China Kinect Student Summer Camp and shared their applications with more than 180 students from the top 30 universities in China.

    Team Applications Highlight Kinect Capabilities and Student Talent

    The following three applications exemplify the potential of Kinect for Windows as well as the students’ creativity and technical skills.

    • Kinect for the Classroom
      Team Frinect, from Wuhan University and Huazhong University of Science & Technology, designed a new set of presentation tools for teachers: by using the Kinect technology, they created a comprehensive digital workspace that combines a virtual blackboard with Microsoft PowerPoint and powerful multimedia and search functionalities. Thanks to Kinect technology, teachers no longer need chalk; by using gestures alone, instructors can type text, draw graphs and tables, underscore key points from long passages with audio cues, record lessons, and upload them to a server. Most importantly, the application promotes a livelier classroom atmosphere and enhances student engagement.
    • Journey Through Time
      The students on team Sunnyblue at Xi’an Jiaotong University wanted to display the history and culture of China in an entertaining, interactive way. And what better way to do this than by building a time machine that uses Kinect technology? The resulting application enables users to build an historically accurate 3-D representation of an ancient Chinese city. They choose architecture and decoration styles that are typical of specific dynasties as they create their own living museum. Next, the users’ avatars assume an historically appropriate appearance as they wander around the city and select period clothing, hairstyles, and makeup via Kinect's object recognition capabilities. After the creation of the setting and characters, the story takes shape. Users invite their online friends to their virtual city, sharing experiences as history comes alive.
    • A Night at the Opera
      No, team K-FLY from Xidian University, didn’t remake the classic Marx Brothers movie—they went one better and built a virtual platform for recreating the pageantry of the Peking Opera. By using Kinect’s depth-sensing and skeletal-tracking technologies, users’ avatars can apply the traditional Peking Opera makeup and then perform some of the best-loved songs from this treasured art form. This is good news for opera fans, who can upload their performances and share them with friends. The application provides a stage on which opera enthusiasts can display their talents, while its novel and vivid approach is certain to attract new devotees to this traditional art.

    Finalists from the  Kinect Pioneer ProgramFinalists from the Kinect Pioneer Program

    Microsoft Research Asia has been delighted with the success of the program. “Through the Kinect Pioneer Program, Chinese students have been given a chance to come into contact with the most cutting-edge technology from Microsoft. It also enables the creativity of Chinese university students to come to life,” says Lolan Song, senior director at Microsoft Research Asia. By developing applications that go beyond traditional games, Chinese students have shown where Kinect can grow and have established the groundwork for the use of Kinect technology in new areas of teaching, culture, and history.

    We’re excited to see how people are inspired to create and innovate by using Kinect technologies in ways we never imagined. Learn more about what we call the Kinect Effect.

    Guobin Wu, Program Manager, Microsoft Research Asia

    Learn More

  • Microsoft Research Connections Blog

    Parallel Processing Software Gets a Boost in Barcelona


    Question: What precocious five-year old is writing parallel code to make the most efficient use of multi-core processors?

    Answer: The Barcelona Supercomputing Center (BSC)–Microsoft Research Centre in Barcelona, Spain, also known as BSCMSRC by those who enjoy trying to pronounce acronyms that contain no vowels.

    From left to right: Andrew Blake, managing director, Microsoft Research Cambridge, Fabrizio Gagliardi, director, Microsoft Research Connections EMEA, Maria Ribera, Dean of Barcelona School of Informatics, Rick Rashid, senior vice president of Microsoft Research, Antoni Giró, president, Rector of Technical University of Catalonia - Universitat Politècnica de Catalunya, Mateo Valero, director, Barcelona Supercomputing Center

    From left to right: Andrew Blake, managing director, Microsoft Research Cambridge; Fabrizio Gagliardi, director, Microsoft Research Connections EMEA; Maria Ribera, dean of Barcelona School of Informatics; Rick Rashid, senior vice president of Microsoft Research; Antoni Giró, president, Rector of Technical University of Catalonia - Universitat Politècnica de Catalunya; and Mateo Valero, director, Barcelona Supercomputing Center

    Okay, so it was a trick question. But the Centre, which celebrates its fifth anniversary on November 2, 2011, truly is a precocious operation, producing code that makes it easy for programmers to develop parallel-processing software. This is vital because everything—from smart phones and tablets, to PCs and supercomputers—is sprouting extra cores so users can do more. A joint venture of BSC and Microsoft Research, the BSCMSRC brings together the expertise of hardware and software researchers from BSC and software mavens from Microsoft Research.

    One technology that the BSCMSRC researchers have been looking at is transactional memory (TM). TM makes it easier to write parallel programs that frequently share data, a process that otherwise requires complex and unwieldy programs. The Centre has developed sophisticated TM applications to date, QuakeTM and Atomic Quake. These applications, which are based on the open-source Quake game server, will be useful in evaluating TM-equipped chips. As part of the €4 million VELOX project funded by the European Commission, BSCMSRC has coordinated the development of a fully integrated TM system that includes hardware simulators, language runtime systems, and compiler support alongside the new TM applications.

    BSCMSRC researchers have also developed a dataflow programming model called StarsS, in which data that is produced and consumed in applications automatically “flows” at program runtime. This frees the programmer from explicitly architecting data movements in his or her application and makes it much easier to develop software. BSCMSRC researchers are integrating the StarsS programming model with the Barrelfish research OS, a new message-passing, open-source operating system being developed by Microsoft Research and ETH Zurich.

    “BSC’s expertise in computer architecture has been a great fit with our expertise in programming language implementation,” notes Tim Harris, senior researcher at Microsoft Research Cambridge. “This cross-disciplinary approach has led to proposals for new, general-purpose hardware features to accelerate the language runtime systems that underpin modern languages such as Haskell and C#.”

    In marking the BSCMSRC’s fifth anniversary, BSC Director Mateo Valero commented “I am proud of the impact of the work done by a very young team at the Centre in our five years of existence. With the multidisciplinary competences of our research personnel, the Centre is in a unique position to influence both hardware and software design. I am also very happy to see Microsoft Research being a major actor in our little Silicon Port at Barcelona in the Mediterranean.”

    Fabrizio Gagliardi, Microsoft Research Connections director for Europe, the Middle East, and Africa—and Mateo’s counterpart in this adventure—adds, “Our collaboration with Mateo and his team of computer architects goes a long time back and was the foundation for this joint endeavor. I am very pleased and proud for the results of this collaboration and the resonance and the impact that this is having worldwide.”

    Kenji Takeda, Solutions Architect and Technical Manager, Microsoft Research Connections EMEA

    Learn More

  • Microsoft Research Connections Blog

    Microsoft Biology Foundation Evolves into New Toolkit: .NET Bio


    .NET Bio logoThe Microsoft Biology Foundation (MBF) has undergone a significant transformation since it was first released. Over time, it’s become clear that a new name was also in order. So today, I am pleased to announce that MBF will now be known as .NET Bio. In addition to the new name, .NET Bio will also have a new location: the Outercurve Foundation. This move is the next logical step in the life of the project: transferring its ownership to a nonprofit foundation that is dedicated to open-source software underscores our community-led philosophy; while Microsoft will continue to contribute to the code, it will do so as one among a growing community of users and contributors.

    About .NET Bio

    .NET Bio is a bioinformatics toolkit that was built using the Microsoft 4.0 .NET Framework. It is designed for use by developers, researchers, and scientists, making it simpler to build applications to meet the needs of life scientists. This open-source platform features a library of commonly used bioinformatics functions plus applications built upon that framework, and can be extended by using any Microsoft .NET language, including C#, F#, Visual Basic .NET, and IronPython.
    Users can perform a range of tasks with .NET Bio, including:

    • Importing DNA, RNA, or protein sequences from files with a variety of standard data formats, including FASTA, FASTQ, GFF, GenBank, and BED.
    • Constructing sequences from scratch.
    • Manipulating sequences in various ways, such as adding or removing elements or generating a complement.
    • Analyzing sequences by using algorithms such as Smith-Waterman and Needleman-Wunsch.
    • Submitting sequence data to remote websites (for example, a Basic Local Alignment Search Tool [BLAST] website) for analysis.
    • Outputting sequence data in any supported file format, regardless of the input format.

    Like other frameworks (for example, BioJava and BioPython), .NET Bio can help reduce the level of effort that is required to implement bioinformatics applications through the provision of a range of pre-written functionality.

    In addition to enhancements to the performance and capacity of the basic features contained in the previous version, the new version will provide a range of new features and demo applications. This includes:

    • Access to advanced math functions by using Sho scripting
    • A comparative DNA sequence assembler sample application
    • A range of command-line utilities

    .NET Bio is now in use by both academic and commercial organizations—including Microsoft—worldwide.

    Simon Mercer, Director of Health of Wellbeing, Microsoft Research Connections

    Learn More

Page 89 of 131 (391 items) «8788899091»