.NET Memory usage - A restaurant analogy

Tess Ferrandez

If broken it is, fix it you should

.NET Memory usage - A restaurant analogy

Rate This
  • Comments 57

My favourite author Simon Singh is a wiz at analogies. In his book The big bang he explains concepts like the doppler effect and the theory of relativity using analogies with frogs and trains that makes it not only easy to understand but you will remember them forever because of the picture they paint in your head.

The other day at work I heard one of my colleagues explaining memory usage and why you get out of memory exceptions to one of his customers using a restaurant analogy.  I've talked about OOMs and memory management in an earlier post but I found the analogy so amusing that I thought I'd share it (and yes, before you say it, i do admit i might have stretched the analogy a little too far:), and that it doesn't hold a candle to Simon Singhs analogies, but then again he sells books and i just rant in a blog...).

Disclaimer:  In order to not get too longwinded I will simplify a lot of things, and say that for example the GC allocates 64 MB segments even though this differs between different framework versions and the size of the objects you allocate (read large object heap). Some other details are also dependent on configuration settings (i.e. using the /3GB switch etc.) but I will exclude such details from the analogy.

Analogy Part 1 - General memory usage

If you have read my earlier posts you will know that a process on a 32-bit system can typically address 2 GB of virtual address space. This is the memory that you have to work with, independently of how much RAM you have.  More RAM is good for performance since you page less with more RAM, but it doesn't do anything to expand the 2 GB address space.

Picture this 2 GB address space as being the floor space of a restaurant.

When you allocate an object (whether it is .net or non-.net) you typically follow a two step process.  You reserve the memory and then you commit space inside your reservation.

The reservation is equal to reserving a table at the restaurant.  And just like in a restaurant, depending on the memory manager you use (we will get to that later) you will reserve the memory in chunks.  Let's say for example you are a party of 3. It is not likely that there will be a table for 3 in the restaurant, but rather you would get a table for 4 out of which you use 3 seats and waste one seat.  

In memory terms the space for the table you have reserved is called reserved memory (virtual bytes), and the actual space you use (for the 3 seats) is comitted memory (private bytes).   The floor space that is not yet reserved is free memory.

On a pretty good restaurant night your restaurant/memory might look something like this where the blue areas are reserved space, red means committed space and white is free space.


Now, if someone calls in to make a reservation for 3 they will get the answer that the restaurant is full, since the only way to seat 3 people together is to seat them on a 4 seat table.  Even though you could fit in two 2-seat tables that wouldn't be good since they all want to sit together.

Similarily when you make memory allocations you won't split a memory reservation out into different locations, it has to be allocated in one chunk or not at all. So the memory result in this case would be "out of memory", even though there is plenty of space left.

An observant person might also note that if we put the tables closer together so that they are completely side-by-side you could easily fit in a new table of 4, but reserved memory areas much like tables at some restaurants can't be moved.

When we talk about memory fragmentation we either talk about the free but unusable (because it is not large enough to fit a new table) we have, or how much of our reserved memory we are not using (difference between virtual bytes and private bytes).

Analogy Part 2 - The .NET GC

Most of the time when you create objects in an application, whether it is .NET or not you use some kind of memory manager (NTHeap, C++ Heap, GC etc.), and in the restaurant case you can think of the memory manager as an hostess that reserves seats for you and ushers you to the location where you are to be seated.  For example if you call malloc you don't have to provide an address where you want your allocation to lie, instead you say that you want memory of a certain size and malloc returns, ok, you will be seated at table 1 in the "C++ heap" area.

The .NET GC takes this one step further and pre-reserves a large table for anyone who might want to use .NET objects in the process (let's say a 64 seat table).  And when anyone creates a .NET object, the GC ushers them to the next available seat on that table.  Once in a while the usher will walk around the table to check if someone is done eating and ask them to leave, and then scoots the rest of the people down the table.   Some people might be waiting on other people to finish up before they can leave (references), so they get to stay too. And some people may be really annoying and say, dude, i got a window seat, i am sooo not moving (pinned objects) which means that the rest of the people can't be scooted down towards the end of the table either.

Any empty seats between people are referred to as .NET memory fragmentation.

Once the 64 seat table is filled up the GC needs to reserve a new 64 seat table if it needs to accomodate newcommers, and if it can't you will get an out of memory exception.

But, how does it really look

Ok, enough with the analogy, here is what memory looks like in a real ASP.NET application


Again, the red parts are committed memory, the blue parts are reserved memory that is not committed and the white space is free space.

The dots you see towards the end of the memory space are probably dlls, and although just like in the restaurant scenario there is a lot of white space, it is likely that none of the gaps between the small red dots are large enough to house a 64 MB segment and thus the next time we fill up a GC segment and need a new one to accommodate a new object, we will get an out of memory exception.

The reason these small red dots (dlls) are spaced out like this is because they are loading at the prefered base addresses for those particular dlls.  You can't really do much about that type of fragmentation since it is hard to know in advance what a "good" prefered base address would be, but what you can do something about is finding out where the memory you are actually using is going.

A comment on performance counters and how not to use taskmanager

Throughout the analogy I talked about private bytes and virtual bytes and these are the two most important performance counters to look at when defining memory usage or memory leaks. 

There is another counter called working set which simplified consists of how much memory is in the memory pages that are currently or was recently touched by threads in the process or approximately, how much of the memory that is used by the process is currently in RAM.  The working set counter might be interesting if you have issues with too much paging and many processes on the same box competing about the RAM, but in order to determine how much memory you are using (reserved or committed) it offers little or no help.

If you want to see this in action, you can create a winforms application and allocate a bunch of objects and see the workingset go up, and then if you minimize the app, the working set drops.  This doesn't by any means mean that you have just released all this memory. It just means that you are looking at a counter that is totally irrelevant for determining how much stuff you store in memory :) Yet... this is the counter that people most often look at to determine memory usage...   

I know that by now you are probably thinking "yeah right", you haven't even heard of this counter before, why would I say that this is the counter most people look at???  The answer is, because most people use task manager to look at memory usage of a process, and specifically look at the Memory Usage column. Surprise surprise:) what this actually shows you is the working set of the process...

If you want to see private bytes which is a far more interesting counter, you sould look at the column in task manager that is labeled Virtual Memory Size (yeah, that's really intuitive:)), or better yet, look in performance monitor at process\private bytes and process\virtual bytes, there is no reason not to if your intent is to investigate high memory usage or a memory leak.


So tonight, go out, grab a bite to eat and see memory management in action:)  I bet you will probably find a lot more similarities than the ones me and my pal came up with...


Leave a Comment
  • Please add 1 and 2 and type the answer here:
  • Post
  • Hi NativeCpp:)

    You are right in that the GC would need to use the white space to set up a table.  What happens is that the GC allocates its memory in chunks and committs out of it.

    For example, at startup of a .net process (server GC) you get one small object heap segment (64 MB) per processor for managed objects.    This is reserved and "owned" by the GC.   When you do:

    MyClass s = new MyClass();

    rather than having to reserve a new slot on some heap, the GC uses it's reserved memory and committs memory out of it.  In other words, the GC has a large blue table (reserved), and when you create a new .net object it seats you and marks it red (committ).

    In the Native C++ world this would work a little differently i believe since virtual memory for C++ objects is not reserved ahead of time, but rather when the object is actually created.  

    The differences between the C++ world and the .net world are so large that they are almost apples and oranges.  In the C++ world you manage the memory yourself (taking care of how much you need to allocate/reserve to fit an object, and taking care of when to remove stale objects), in the .NET world the GC does this for you.  

    The problem in the Native world when it comes to memory leaks is often forgetting to free mem, or loosing a pointer to a memory area.

    In the Managed (.net) world those kind of memory leaks would rarely or ever occurr.   Rather, the memory issues that occurr in the managed world are because you hold a reference to an object, keeping it alive a lot longer than you are meaning to.

    I know I strayed away a little from the original question in the end but hope it helps
  • Thanks for you response. Could you explain me the Server GC and do we get any added benifit using this?
  • Hi Padma,

    There are a lot of articles about the GC on MSDN, but one blog that specifically deals with the GC and does so quite well is http://blogs.msdn.com/maoni/archive/2004/09/25/234273.aspx
    Where the different GC flavours are described.

  • Thanks for the additional clarification. I agreed with you that native C++ and managed are totally different as far as memory is concerned. I also agreed that in managed world we are more concerned about memory rentention than leak. One of my daily activities (weekdays :-) )is to read your blog.

    As for your previous articles on debugging memory issues using SOS, they are good. But I would love to have some 'real' or 'tough' cases where you need to dig deep to ioslate the problem.

    Keep up the good work.

  • Test, great analogy. A question I haven't been able to find answer to is: which memory memoryLimit in machine.config is about? - If it's private bytes then is GC aware of this limit to collect memory more often when it's approaching this limit? - If it's virtual bytes then is GC aware of this limit to stop itself from over allocating when it's approaching this limit? thanks
  • Hi Zeng,

    The memory limit in machine.config is only for ASP.NET and it is based on the amount of private bytes in the process.   The GC as such is not aware of it, but ASP.NET is and will purge the cache when you get close to the limit.  Allocations can still happen but once you reach the limit the process will start a recycle.

  • Tess, thanks for responding.  I don't know what "the cache" you referred to is, could you explain here? And if I understand you correctly there is a great chance that the process gets recycled just because GC does collect often enough especially when a big tree of nodes are waiting to be colllected, is that right? Thanks again.

  • The cache I am referring to is the ASP.NET cache.  The memory limit is only applicable to ASP.NET applications, it does not apply to winforms apps or windows services.

    If it is a winforms app or windows service there is no recycling.  If the process "crashes" it won't start up again automatically.  If it is an ASP.NET app it will be recycled when it reaches the memory limit.  This doesn't have anything to do with how much the GC has to do.

  • Great, and entertaining, article!

    I am having a situation where my application has about 70Mb in privates and >300 Mb in virtual bytes, similar to other comments here.

    When looking a bit in windbg I find that MEM_IMAGE (RegionUsageImage) corresponds to almost 200Mb. At a glance this seems to be related to dlls and such that are used by the application. Is this a normal size for these objects?

    Can anything be done to reduce the amount?

  • Hi Fredrik,

    Depends on what you consider normal for your application.  If it is 200MB virtual for dlls I wouldn't be too worried but you can run lm to look at the dlls that you have loaded to see if there is a lot that you dont expect.  Then you can run !dumpdomain to see the assemblies for each domain and !dumpdynamicassemblies to see the dynamic assemblies.  If you have a lot of those you should look into it (see previous posts on dynamic assemblies/XMLSerializer).  

    Also if it is an asp.net app, check that you don't have debug=true in your web.configs.  But overall, 70 MB private bytes is pretty small so I don't think you have a problem with dlls based on that.

  • I am using Vista RC1. It is shown as "Memory(Private Working Set)" in task manager, but the value seems have no relationship to private bytes, virutal bytes or working set in perfmon at all.

    Perhaps it is correct in RTM.

  • That is absolutely amazing dude! Excellent excellent stuff!

  • I have a question. We encoutner troubles (you'll see it's normal we do when I'll have finish explaning what we are trying to do ;) with a .Net appliation. We have an application that stores document for users. We upload documents into the http request, to do so we modified the maxRequestLength parameter in the web.config file of the application. The problem is that we want to allow user to upload documents up to 100Mb (yes I know but I am asked for a miracle !). the result is that sometimes we can add such big documents and sometimes we can't. The server as loads of physical memory.

    The thing is that the memory usage for the application never exceed 500Mb or something like that. I fear that when the upload fails it is because it starts to store the request in the memory and at some point don't find any free contiguous memory slot to keep on loading the request. I would expect that it reserves all the memory when the request arrives.

    If anyone has any idea regarding this issue I would be very thankfull !

  • You might want to check out


  • thanks for your quick answer !

    In fact that is exactly What I try to make understand to my customer but still they first want me to do a miracle ...

Page 2 of 4 (57 items) 1234